

Data Generation via Latent Factor Simulation for Fairness-aware Re-ranking

The 7th FAccTRec Workshop on Responsible Recommendation at RecSys 2024

Elena Štefancová, Cassidy All, Joshua Paup, Martin Homola, Nicholas Mattei, Robin Burke

Fairness-Aware Recommendation

• approaches

- pre-processing
- model-based
- post-processing or re-ranking
- challenges
 - limited repertoire of data sets
 - limited distribution of protected items / groups
- solution
 - synthetic data

Synthetic Data Generation

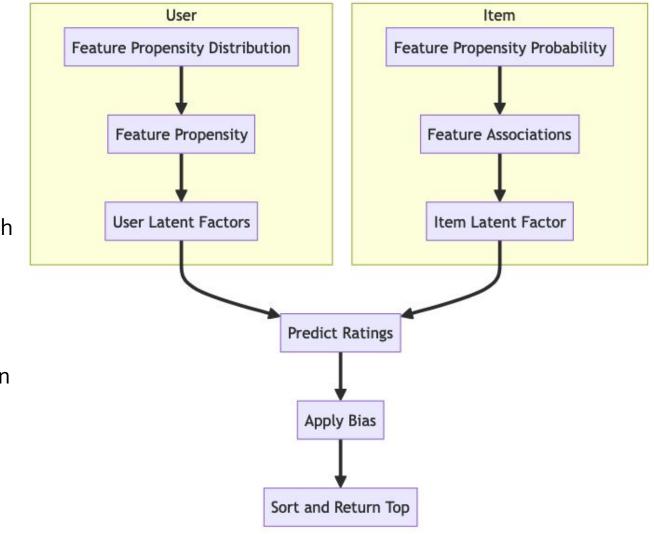
- heuristic-based
 - leverage strong assumptions on the dataset distributions and properties
 - e.g DataGenCARS (user profiles designed manually)
- clustering-based
 - profiles mined from historical data
 - quality depends on the assumptions made about user behavior
 - e.g. Monti et Al. 2019, Pasinato et Al. 2013
- learning from a data source
 - matrix factorization, variational auto-encoders
 - unrealistic models, low dimensionality, sparsity, lack of item/user metadata
- data obfuscation
 - maintains user privacy by modifying existing data but retains real user data

Simulated ratings are not needed

- to study re-ranking
 - what we need to simulate is the output of a recommender system
 - for each user, top k items with associated ratings
 - we don't need to create rating profiles, build a recommender and produce predictions
- to study fairness
 - we need to simulate how unfairness impacts recommender system behavior
 - protected item features
 - that may (through bias) influence predicted ratings
 - minority users
 - that have different preferences from the majority

Latent Factor Simulation (LAFS)

- a probabilistic approach to handling protected features
- inspired by the matrix factorization technique for collaborative filtering



LAFS: Generating users

- Core ideas
 - produce a user latent factor matrix as if matrix factorization had been applied (k factors)
 - assume that protected features are capture by a subset of latent factors
- Experimenter specification
 - experimenter specifies a (normal) feature propensity distribution
 - For each latent factor, what is the mean and variance across the user base
 - Experiment may want to have multiple type of users with different characteristics
- Generate "users"
 - draw from this distribution to create user profiles with propensities for each of the k factors
- Generate factors
 - treat the propensity as a mean value and draw a sample from a normal distribution centered at this point
 - the reason to do this is so that user factors are not deterministically tied to the propensities

LAFS: Generating items

• Similar to users

- item factor matrix
- difference: the propensity vector is binary
 - the item has the feature or it doesn't
- this enables us to categorize items as having protected values of sensitive features or not
- Experimenter specification
 - vector of probabilities (instead of mean and variance)
- Generate items
 - vector of binary-valued features for each
- Generate item factors
 - as with users, treat the propensity as a mean value and draw a sample from a normal distribution centered at this point

LAFS: Putting them together

• Create Predictions

- for each user, predict random *m* items and compute their ratings multiplying user factor and item factor
- Inject Bias (against protected items)
 - applying a randomly generated penalty to the computed rating for its each sensitive feature
 - the penalty is drawn from an experimenter-specified vector of bias distributions

Create Recommendations

- for each user, sort items by rating and select the top *n* as recommendations
 - list focuses on highest predicted ratings as a recommender would

Normalization

- an experimenter-specified min-max transformation is applied
 - so the data looks more like RecSys output

Challenges and Future Work

- evaluating synthetic datasets for recommender systems
 - lack of predictive measures connecting dataset properties with performance
- compare synthetic and real-world output and latent factors
 - explore a variety of visualizations, metrics and other techniques
- incorporate new features for more realistic simulations
 item popularity, feature correlation

github.com/that-recsys-lab/lafs

LAFS: Formal specification

ni	The number of items
n _u	The number of users
k	The number of latent factors
S	The number of sensitive factors $(s < k)$
σ_f	Standard deviation for factor generation
$d_u = [(\mu_{u1}, \sigma_{u1}), (\mu_{u2}, \sigma_{u2}), (\mu_{uk}, \sigma_{uk})]$	Feature propensity distributions for users
$\Pi_{u} = [\pi_{u1}, \pi_{u2},, \pi_{uf}]$	Feature propensities for users
$\Pi_U = [\Pi_u \forall u]$	The matrix of all user-feature associations
U	$< n_u \times n_f >$ matrix of user latent factors
$d_i = [d_{i1}, d_{i2},, (d_{if}]$	Feature propensity probabilities for items
$\Pi_i = [\pi_{i1}, \pi_{i2},, \pi_{if}]$	Feature associations for item i
$\Pi_I = [\Pi_i \forall i]$	The matrix of all item-feature associations
V	$< n_i \times n_f >$ matrix of item latent factors
<i>l'</i>	The size of the initial recommendation list
1	The size of the output recommendation list
$B = [(\mu_1, \sigma_1), (\mu_2, \sigma_2),, (\mu_f, \sigma_s)]$	Bias generators for sensitive features