

Promoting Decision-Making Autonomy Through Reflection

Simon WS Fischer FAccTRec 14-10-2024

Radboud University Radboudume

ijmegen Decision Tool			Welkom SMK Gebruiker	6 Sint M	Maartenskliniek
Voorspelling voor patiënt		0		Exp	orteer naar PDF
Responder (ODI ≤ 22)			Non-Responder (ODI ≥ 41)		
Chirurgie			Geen interventie		
	79%	0		9 %	0
CPP program			CPP program		
	50%	0		5%	0
Geen interventie			Chirurgie		
	40%	0	1	2%	0

Disclaimer

De informatie in dit scherm is bedoeld als indicatie voor triage. De onderliggende predictiemodellen zijn gebaseerd op PROMs data van een historisch cohort.

NDT © 2016 - version 1.0

Radiology

Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance

Thomas Dratsch, MD* • Xue Chen, MD* • Mohammad Rezazade Mehrizi, PhD • Roman Kloeckner, MD • Aline Mähringer-Kunz, MD • Michael Püsken, MD • Bettina Baeßler, MD • Stephanie Sauer, MD • David Maintz, MD • Daniel Pinto dos Santos, MD

medicine

LETTERS https://doi.org/10.1038/s41591-020-0942-0

Check for updates

Human-computer collaboration for skin cancer recognition

Philipp Tschandl[®]^{1,17}, Christoph Rinner[®]^{2,17}, Zoe Apalla³, Giuseppe Argenziano[®]⁴, Noel Codella⁵, Allan Halpern⁶, Monika Janda⁷, Aimilios Lallas³, Caterina Longo^{8,9}, Josep Malvehy^{10,11}, John Paoli^{12,13}, Susana Puig^{10,11}, Cliff Rosendahl¹⁴, H. Peter Soyer[®]¹⁵, Iris Zalaudek¹⁶ and Harald Kittler[®]^{1⊠}

Intelligent decision support in medical triage: are people robust to biased advice?

Birgit van der Stigchel¹, Karel van den Bosch¹, Jurriaan van Diggelen¹, Pim Haselager²

¹TNO, Human Machine Teaming, Soesterberg, NL, The Netherlands ²Donders Centre for Neuroscience, Nijmegen, Gelderland, NL, The Netherlands Address correspondence to van der Stigchel Birgit, E-mail: birgit.vanderstigchel@tno.nl

Radiology

Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance

Thomas Dratsch, MD* • X Aline Mähringer-Kunz, MD David Maintz, MD • Dav

From the Institute of Diagnostic and Int Germany (T.D., X.C., M.P., D.M., D.I Netherlands (M.R.M.): Institute of Int

Generative AI Can Harm Learning

Hamsa Bastani,^{1*} Osbert Bastani,^{2*} Alp Sungu,^{1*†} Haosen Ge,³ Özge Kabakcı,⁴ Rei Mariman

¹Operations, Information and Decisions, University of Pennsylvania
²Computer and Information Science, University of Pennsylvania
³Wharton AI & Analytics, University of Pennsylvania
⁴Budapest British International School

robust to biased advice?

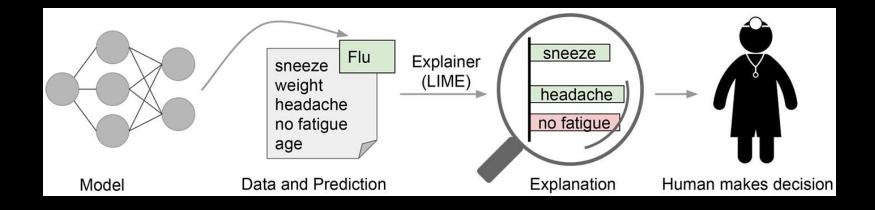
Birgit van der Stigchel¹, Karel van den Bosch¹, Jurriaan van Diggelen¹, Pim Haselager²

TNO, Human Machine Teaming, Soesterberg, NL, The Netherlands Donders Centre for Neuroscience, Nijmegen, Gelderland, NL, The Netherlands Address correspondence to van der Stigchel Birgit, E-mail: birgit.vanderstigchel@tno.nl

SSRN

Research Question

How to calibrate reliance on machine recommendations?


EU AI ACT Article 14 Human Oversight

"remain aware of the possible tendency of automatically relying or over-relying on the output"

EU HLEG Trustworthy AI

First requirement: human agency and oversight "Users should be able to make informed autonomous decisions regarding AI systems."

Explainable AI

🕈 frontiers Moral Decision Making in in Robotics and AI Human-Agent Teams: Human Control and the Role of Explanations

Jasper van der Waa^{1,2}*, Sabine Verdult³, Karel van den Bosch³, Jurriaan van Diggelen¹, Tjalling Haije¹, Birgit van der Stigchel^{1,4} and Ioana Cocu¹

¹Perceptual and Cognitive Systems, TNO, Soesterberg, Netherlands, ²Interactive Intelligence, Technical University Delft, Delft, Netherlands, ³Training and Performance Innovations, TNO, Soesterberg, Netherlands, ⁴Artificial Intelligence, Radboud University, Niimegen, Niimegen, Netherlands

ARTICLE

Open Access

Translational Psychiatry

How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection

Maia Jacobs¹, Melanie F. Pradier¹, Thomas H. McCoy Jr.^{2,3}, Roy H. Perlis^{2,3}, Finale Doshi-Velez¹ and Krzysztof Z. Gajos

> Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance

Gagan Bansal* bansalg@cs.washington.edu University of Washington

Raymond Fok[†] rayfok@cs.washington.edu University of Washington

> Marco Tulio Ribeiro marcotcr@microsoft.com

Tongshuang Wu* wtshuang@cs.washington.edu University of Washington

Besmira Nushi besmira.nushi@microsoft.com Microsoft Research

University of Washington Ece Kamar

eckamar@microsoft.com Microsoft Research

Joyce Zhou[†]

jyzhou15@cs.washington.edu

Daniel S. Weld weld@cs.washington.edu CHI 2021

To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-assisted Decision-making

ZANA BUÇINCA, Harvard University, USA MAJA BARBARA MALAYA, Lodz University of Technology, Poland KRZYSZTOF Z. GAJOS, Harvard University, USA

23 - 27 Oct 2021 (held virtually)

Explainable AI is Dead, Long Live Explainable AI!

Hypothesis-driven Decision Support using Evaluative AI

Tim Miller tmiller@unimelb.edu.au The University of Melbourne Melbourne, VIC, Australia

Let Me Think! Investigating the Effect of Explanations Feeding Doubts About the AI Advice

Don't Just Tell Me, Ask Me: Al Systems that Intelligently Frame Explanations as Questions Improve Human Logical Discernment Accuracy over Causal AI explanations

Valdemar Danry MIT Media Lab, Massachusetts Institute of Technology Cambridge, Massachusetts, United States vdanry@media.mit.edu

> Yaoli Mao Columbia University New York City, New York, United States ym2429@tc.columbia.edu

Pat Pataranutaporn MIT Media Lab, Massachusetts Institute of Technology Cambridge, Massachusetts, United States patpat@media.mit.edu

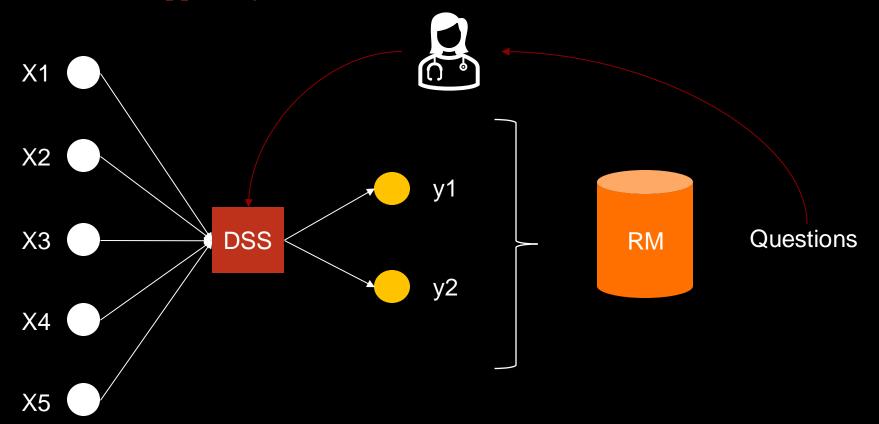
Pattie Maes MIT Media Lab, Massachusetts Institute of Technology Cambridge, Massachusetts, United States pattie@media.mit.edu

Photo by Anne O'Sullivan from Pexels

Cambridge Quarterly of Healthcare Ethics (2023), 1–10 doi:10.1017/S0963180122000718

ARTICLE

Reflection Machines: Supporting Effective Human Oversight Over Medical Decision Support Systems


Pim Haselager¹*, Hanna Schraffenberger², Serge Thill¹, Simon Fischer¹, Pablo Lanillos¹, Sebastiaan van de Groes³ and Miranda van Hooff^{3,4}

Questioning AI: Promoting Decision-Making Autonomy Through Reflection

Simon W.S. Fischer simon.fischer@donders.ru.nl Donders Institute for Brain, Cognition, and Behaviour Nijmegen, Netherlands

Decision-Support System + Reflection Machine

Types of Questions

Causal depenceny

- How does outcome Y follow from data point x
- Why not option B given z

Relevance

- Is data point *x* relevant to focus on?

Counterfactual

- Would you recommend the same option if data *x* were different?

Types of Questions – Cont.

Model up-to-dateness

- Did you consider factor *x*, which is not included in the DSS?

Expertise

- Does the recommendation align with your assumptions? If not, why not?

Hypothetical Scenarios

- Is it possible to quit smoking? If so, this would affect the outcome by 25%.

Aim

Elicit certain behaviour through engagement

- Critical reflection
- Proactive care

Affects

- Decision-autonomy
- Self-efficacy

Open Considerations

- How often to ask
- Tailor questions to the expertise of decision-maker
- Questions from the patient's perspective
- Process answers

Hypothesis

Questions raise doubt – where necessary – and stimulate deliberation.

This forward-looking approach calibrates reliance on machine recommendations.

simon.fischer@donders.ru.nl