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Introduction

Health Recommender 
Systems (HRS)

4

Impacts of Biased Data
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Personalized health recommendations deploying 
machine learning and information retrieval

Dependence of Recommender systems' reliability on 
the quality of their training data

Negative impact of biased predictions on patient care 
widening health disparities

Introduction
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Manual Bias 
Detection
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Growing concerns over biased AI models in healthcare recommender systems due 
to their use in high-stakes decisions

Our Approach:

○ Exploring AI models for debiasing medical text.
○ Augmenting unbiased samples and evaluating a wider range of models, 

including LLMs
○ Data refinement using WSD



Related Work
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Our Approach:

○ Apply Large Language Models (LLMs) for bias detection.
○ Use TinyLlama, an efficient version of Llama 2, for bias classification.
○ Implement Word Sense Disambiguation (WSD) to improve data 

refinement and enhance the set of negative samples.

Computational 
Bias Detection
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● LLMs perform on par with encoder-only models like BERT in NLP tasks without 
fine-tuning.

Prompting Techniques:

○ Zero-shot, Few-shot, and Chain of Thought (CoT) prompting are crucial 
for improving model quality and output accuracy.

Our Approach:

○ We are the first to evaluate zero- and few-shot prompting for detecting 
bias in medical curricular content.

LLMs and Prompt 
Engineering
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BRICC* Dataset for Bias Reduction in 
Curricular Content

12*Salavati et al. (2024)



First-level: Identify Social Demographic

Second-level: Identify Bias

Third-level: Identify Link Between Social 
Demographic and Medical Condition

‘Sex,’ ‘Gender,’ ‘Race,’ ‘Ethnicity,’ ‘Age,’ and ‘Geography’

‘Biased,’ ‘Potentially Biased,’ ‘Non-Biased,’ and ‘Review’

Ex. ‘Race-Disease’

Data Labels

13



Negative Samples

● Samples marked 

as biased without 

any other label

All Negative Samples

Extracted 
Negatives

Labeled 
Negatives

● Samples 

containing all 

labels

XN LN
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Extracted Negatives

Uninformative Extracted  Negative
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Extracted Negatives

1 0
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Word Sense Disambiguation
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Machine Learning for Word Sense 
Disambiguation and Classification
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What is the most effective model for word sense 
disambiguation in a medical context? Can we produce 

accurate results? 

18
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Word Sense Disambiguation (WSD) 
Experiments

Split



Data for WSD

Extracted negatives randomly sampled

● Human expert labels data

○ Label: 1 if sample relates to a social demographic

○ Label: 0 otherwise

● Additional samples synthetically generated using GPT-4o

○ More accurate results?

Demographics of interest include Race and Ethnicity

20

Synthetic 
Data

Dataset

Annotators GPT-4o

Data Collection

Manual 
Data



WSD Problem Statement

Given a set of words         and a set of senses                                          for each                         

and a context (i.e. an ordered sequence of words)                                                                            

jjdjdjdkalskdjfhkjshdfscjvskjvhaskjfhaksdjfh   …                            

We are interested in determining if a term       is related to a sense       in an 

excerpt      

21



WSD Example
= race/ethnicity                                                                                            

= {‘white’, ‘Black’...}
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Black youth less likely to 
be diagnosed with MDD, 

Bipolar, or  substance 
use disorder than white

youth

White matter and 
Grey matter 

anatomy of the 
spinal cord.

= TRUE = FALSE



Evaluation of WSD models
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Evaluation of WSD models

24

3



Bias Classification
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Approach and Evaluation of Bias Detection Models
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Bias Example
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“They promote hair growth 

in the groin, axilla, chest 

and face, yet they also 

promote hair loss in the 

scalp in men who are 

genetically susceptible to 

androgenetic alopecia.”

Label: Biased
Category: Gender Bias

Reasoning: “Use sex terms when 
speaking of populations, should be 
male instead of men. Also, include 
citation to support this assertion.”



Bias Classification Problem Statement
● Formally, Salavati et al. define type-specific bias as a binary label                                                           

indicating whet                                indicating whether excerpt 𝑥 is 

biased with respect to a social identifier category 𝑡

● In the present work, we consider only the general definition of bias, 

regardless of which category     in a set      it belongs to:

27Salavati et al. (2024)



Bias Classification Data
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LN

Negatives 

labeled by 

human 

annotators

XN

Negatives 

extracted by 

use of social 

identifiers

XN*

Extracted 

Negatives 

filtered using 

WSD



Bias Classification Data Sets
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LN

Human 

annotated 

dataset

LN+XN

Dataset 

used by 

Salavati et al.

LN+XN*

Refined 

dataset by 

Salavati et al 

using WSD



Evaluation of Bias Detection models
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Evaluation of Bias Detection models
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Key Findings and Future Implications

33



Conclusion

● Health-related applications and recommender systems are prone to biases
● Developed a framework to detect and diagnose bias in medical curricula by 

an emphasized focus on data over model
● WSD models were highly effective at distinguishing biased excerpts from non-

biased ones
● While prompt engineering of LLMs can handle many tasks, they are not well-

suited for health related bias classification

34



Discussion

Further explore the potential of 

ChatGPT-4o (or other future 

OpenAI models)

Use of other bias categories

(E.g. geography)

Use case in other domains

(Crucial role of tone in 

determining word meaning esp. 

in social media)

Challenges with LLMs

(Computational cost, time 

constraints, accessibility 

issues)

35
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Thank You. 
Questions?

Link to paper
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