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Fair Machine Learning
• Discrimination refers to unjustified distinctions of individuals 

based on their membership in a certain group.
• Federal Laws and regulations disallow discrimination on several 

grounds: 
– Gender, Age, Marital Status, Race, Religion or Belief, Disability or Illness 

……
– These attributes are referred to as the protected attributes.
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Static vs. Sequential Setting
• Most studies are based on static settings where one-shot decisions 

are made on tasks such as classification and regression.
• In practical situations, decision-making is more of a sequential 

nature.
– Decision models are deployed and make decisions sequentially.
– Data arrive and are observed sequentially. 

• Fair machine learning in the sequential setting is underexplored.
– Multiple decision models connected in a partial order.
– Single decision model executed repeatedly and creates feedback loops.
– Online recommendation where customers arrive in a sequential manner.
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Background
• Structural Causal Model (Pearl, 1995): A mathematical framework 

for describing the causal mechanisms of a system as a set of 
structural equations.

• Describe how causal relationships and causal effects can be 
inferred from observed data.
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Structural Causal Model
• A causal model is triple ℳ =< 𝑼𝑼,𝑽𝑽,𝑭𝑭 >, where 

– 𝑼𝑼 is a set of exogenous (hidden) variables whose values are determined 
by factors outside the model;

– 𝑽𝑽 = {𝑋𝑋1,⋯ ,𝑋𝑋𝑖𝑖 ,⋯ } is a set of endogenous (observed) variables whose 
values are determined by factors within the model;

– 𝑭𝑭 = {𝑓𝑓1,⋯ ,𝑓𝑓𝑖𝑖 ,⋯ } is a set of deterministic functions where each 𝑓𝑓𝑖𝑖 is a 
mapping from 𝑼𝑼 × (𝑽𝑽 ∖ 𝑋𝑋𝑖𝑖) to 𝑋𝑋𝑖𝑖. Symbolically, 𝑓𝑓𝑖𝑖 can be written as

where 𝒑𝒑𝒂𝒂𝑖𝑖 is a realization of 𝑋𝑋𝑖𝑖’s parents in 𝑽𝑽, i.e., 𝑷𝑷𝒂𝒂𝑖𝑖 ⊆ 𝑽𝑽, and 𝒖𝒖𝑖𝑖 is a 
realization of 𝑋𝑋𝑖𝑖’s parents in 𝑼𝑼, i.e., 𝑼𝑼𝑖𝑖 ⊆ 𝑼𝑼.
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𝑥𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝒑𝒑𝒂𝒂𝑖𝑖 ,𝒖𝒖𝑖𝑖)



Causal Graph
• Each causal model ℳ is associated with a direct graph 𝒢𝒢 = (𝒱𝒱,ℰ), 

where
– 𝒱𝒱 is the set of nodes represent the variables 𝑼𝑼 ∪ 𝑽𝑽 in ℳ;
– ℰ is the set of edges determined by the structural equations in ℳ: for 𝑋𝑋𝑖𝑖, 

there is an edge pointing from each of its parents 𝑷𝑷𝒂𝒂𝑖𝑖 ∪ 𝑼𝑼𝑖𝑖 to it.
• Each direct edge represents the potential direct causal relationship.
• Absence of direct edge represents zero direct causal relationship.

• Assuming the acyclicity of causality, 𝒢𝒢 is a directed acyclic graph 
(DAG).
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A Causal Model and Its Graph
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A Markovian Model and Its Graph
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Causal Inference and (Hard) Intervention
• The basic operation of manipulating a causal model.

– Simulate the manipulation of the physical mechanisms by some physical 
interventions or hypothetical assumptions.

– Forces some observed variables 𝑿𝑿 ∈ 𝑽𝑽 to take certain constants 𝒙𝒙.

• Mathematically formulated as 𝑑𝑑𝑑𝑑(𝑿𝑿 = 𝒙𝒙) or simply 𝑑𝑑𝑑𝑑(𝒙𝒙).
• For an observed variable 𝑌𝑌 disjoint with 𝑿𝑿, its interventional 

variant under intervention 𝑑𝑑𝑑𝑑(𝒙𝒙) is denoted by 𝑌𝑌𝑿𝑿←𝒙𝒙 or 𝑌𝑌𝒙𝒙.
• The effect of intervention on all other observed variables 𝒀𝒀 = 𝑽𝑽\𝑿𝑿

is represented by the post-intervention distribution of 𝒀𝒀.
– Denoted by 𝑃𝑃(𝒀𝒀 = 𝒚𝒚|𝑑𝑑𝑑𝑑(𝑿𝑿 = 𝒙𝒙)) or simply 𝑃𝑃(𝒚𝒚|𝑑𝑑𝑑𝑑 𝒙𝒙 );
– Or equivalently 𝑃𝑃(𝒀𝒀𝑿𝑿←𝒙𝒙 = 𝒚𝒚) or simply 𝑃𝑃(𝒚𝒚𝒙𝒙).
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Soft Intervention
• Force variables to take a functional relationship in 

responding to some other variables.
• Example: 𝑑𝑑𝑑𝑑 𝑌𝑌 = ℎ𝜃𝜃 𝑿𝑿 is a soft intervention that 

substitutes structural equation associated with 𝑌𝑌 by ℎ𝜃𝜃 𝑿𝑿 .

• Effect of soft intervention is represented by post-intervention 
distributions.

• Under certain assumptions (e.g., Markovian), both hard and 
soft interventional distributions can be computed from 
observed data.
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Total (Causal) Effect
• The total effect measures the causal effect transmitted along all causal paths.
• The total effect of 𝑋𝑋 on 𝑌𝑌 under two interventions 𝑑𝑑𝑑𝑑 𝑥𝑥1 , 𝑑𝑑𝑑𝑑 𝑥𝑥2 :

• Example:
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𝑇𝑇𝐸𝐸 𝑥𝑥2, 𝑥𝑥1 = 𝑃𝑃 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑥𝑥2 − 𝑃𝑃 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑥𝑥1

𝑑𝑑𝑑𝑑(𝐻𝐻 = 2)

𝐼𝐼

𝑊𝑊

𝐸𝐸

𝑃𝑃(𝑖𝑖)

𝑃𝑃(𝑤𝑤 ∣ 𝐻𝐻 = 2)

𝑃𝑃(𝑒𝑒 ∣ 𝑖𝑖,𝐻𝐻 = 2,𝑤𝑤)

𝑃𝑃 𝐸𝐸 = ‘𝐴𝐴𝐴 𝑑𝑑𝑑𝑑 𝐻𝐻 = 2



Path-Specific Effect
• Path-specific effect measures the causal effect transmitted along certain 

causal paths.
• Given a subset of causal paths 𝜋𝜋, the causal effect of 𝑋𝑋 on 𝑌𝑌 transmitted along 

𝜋𝜋 under two interventions 𝑑𝑑𝑑𝑑 𝑥𝑥1 (a.k.a., reference), 𝑑𝑑𝑑𝑑 𝑥𝑥2 :

• Example: 
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Counterfactual Effect
• Counterfactual effect measures the causal effect while we have certain 

observations or evidence.
• Counterfactual effect of 𝑋𝑋 on 𝑌𝑌 under two interventions 𝑑𝑑𝑑𝑑 𝑥𝑥1 , 𝑑𝑑𝑑𝑑 𝑥𝑥2 given 

that we observe 𝑶𝑶 = 𝒐𝒐:

• Example: 

15

𝐶𝐶𝐸𝐸 𝑥𝑥1, 𝑥𝑥2 𝒐𝒐 = 𝑃𝑃 𝑦𝑦𝑥𝑥1 𝒐𝒐 − 𝑃𝑃 𝑦𝑦𝑥𝑥2 𝒐𝒐

𝑃𝑃 𝐸𝐸 = ‘𝐴𝐴𝐴𝐻𝐻=2 𝐻𝐻 = 1,𝐸𝐸 = ‘𝐵𝐵𝐴
𝑑𝑑𝑑𝑑(𝐻𝐻 = 2) 𝐸𝐸

|𝐻𝐻 = 1 |𝐸𝐸 = ‘𝐵𝐵𝐴



Causality-based Fairness Notions
• Protected attribute: 𝑆𝑆 = {𝑠𝑠+, 𝑠𝑠−}
• Profile attributes: 𝑋𝑋
• Decision: 𝑌𝑌

• Demographic parity: 
𝑇𝑇𝐸𝐸 𝑠𝑠+, 𝑠𝑠− = 0

• Direct/indirect non-discrimination
𝑆𝑆𝐸𝐸𝜋𝜋 𝑠𝑠+, 𝑠𝑠− = 0

• Counterfactual fairness
𝐶𝐶𝐸𝐸 𝑠𝑠+, 𝑠𝑠− 𝒙𝒙 = 0
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FAIR MULTIPLE DECISION MAKING 

17
Y. Hu, Y. Wu, L. Zhang, and X. Wu. Fair Multiple Decision Making through Soft Interventions. NeurIPS, 2020.



Problem Setting
• Consider multiple decision models such that:

– One decision model may influence one another;
– Feature distribution may change due to deployment of decision models;

• All decision models may contain discrimination, either be 
introduced by themselves or transmitted from upstream models.

• Objective: Build fair models for all decision-making tasks.
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Challenge
• Building a fair model for each task independently may not work.

• Toy example:
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𝑋𝑋1 → 𝑌𝑌1 → 𝑋𝑋2 → 𝑌𝑌2
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Step 1: data collection

Toy Example: 𝑋𝑋1 → 𝑌𝑌1 → 𝑋𝑋2 → 𝑌𝑌2

(𝑋𝑋1,𝑌𝑌1) (𝑋𝑋2,𝑌𝑌2)
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Step 1: data collection
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Step 1: data collection

Why ?
 Decision �𝑌𝑌1 will affect values of �𝑋𝑋2

 Distribution 𝑋𝑋2 Distribution �𝑋𝑋2
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ℎ2 �𝑌𝑌2



Proposed Solution
• Core idea: leverage Pearl’s structural causal model, treat each 

decision model as a soft intervention, and infer the post-
intervention distributions to formulate the loss function as well as 
the fairness constraints.

• Advantages:
– Learn multiple fair classifiers simultaneously and only require static 

training data.
– Can employ off-the-shelf classification models and optimization 

algorithms.
– Achieve causal fairness (total effect in this work).

24



Using Soft Interventions to Simulate 
Decision Model Deployments

• In general, we have 𝑙𝑙 decisions {𝑌𝑌1,⋯ ,𝑌𝑌𝑙𝑙}.
• For each decision 𝑌𝑌𝑘𝑘, we build a classifier ℎ𝑘𝑘(𝒛𝒛𝑘𝑘).
• The soft intervention for deploying all these models is 𝑑𝑑𝑑𝑑(ℎ1,⋯ , ℎ𝑙𝑙).
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𝑌𝑌1 = ℎ1 𝑋𝑋1

𝑋𝑋2 | 𝑑𝑑𝑑𝑑 𝑌𝑌1 = ℎ1 𝑋𝑋1

𝑌𝑌2 = ℎ2 𝑋𝑋2 | 𝑑𝑑𝑑𝑑 𝑌𝑌1 = ℎ1 𝑋𝑋1



Loss Function and Fair Constraints
• Traditionally, classification error of classifier ℎ:𝒁𝒁 ↦ 𝑌𝑌 is

• Under soft intervention of deploying all models, for classifier ℎ𝑘𝑘

• Similarly, fairness constraints is given by total effect
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𝑅𝑅 ℎ = 𝔼𝔼𝒁𝒁 𝑃𝑃 𝑌𝑌 = 1 𝒛𝒛 𝟏𝟏ℎ 𝒛𝒛 <0 + 𝑃𝑃 𝑌𝑌 = 0 𝒛𝒛 𝟏𝟏ℎ 𝒛𝒛 ≥0

𝑅𝑅 ℎ𝑘𝑘 = 𝔼𝔼𝒁𝒁𝑘𝑘|𝑑𝑑𝑑𝑑(ℎ1,⋯,ℎ𝑙𝑙) 𝑃𝑃 𝑌𝑌𝑘𝑘 = 1 𝒛𝒛𝑘𝑘 𝟏𝟏ℎ 𝒛𝒛𝑘𝑘 <0 + 𝑃𝑃 𝑌𝑌𝑘𝑘 = 0 𝒛𝒛𝑘𝑘 𝟏𝟏ℎ 𝒛𝒛𝑘𝑘 ≥0

𝑇𝑇𝐸𝐸 ℎ𝑘𝑘 = 𝑃𝑃 𝑌𝑌𝑘𝑘 = 1 𝑑𝑑𝑑𝑑 𝑆𝑆 = 1,ℎ1,⋯ ,ℎ𝑙𝑙 − 𝑃𝑃 𝑌𝑌𝑘𝑘 = 1 𝑑𝑑𝑑𝑑 𝑆𝑆 = 0,ℎ1,⋯ ,ℎ𝑙𝑙



Deriving Loss Function and Fair Constraints 
with Observed Data

• Loss function

• Fairness constraint
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Problem Formulation for Fair Multiple 
Decision Making

• The problem of fair multiple decision making for 𝒀𝒀 = {𝑌𝑌1,⋯ ,𝑌𝑌𝑙𝑙} is 
formulated as the following constrained optimization problem:

min
ℎ1,⋯,ℎ𝑙𝑙∈ℋ

�
𝑘𝑘=1

𝑙𝑙

𝑅𝑅𝜙𝜙(ℎ𝑘𝑘) 𝑠𝑠. 𝑡𝑡. ∀𝑘𝑘,−𝜏𝜏𝑘𝑘 ≤ 𝑇𝑇𝜙𝜙 ℎ𝑘𝑘 ≤ 𝜏𝜏𝑘𝑘

where 𝑅𝑅𝜙𝜙(ℎ𝑘𝑘) and 𝑇𝑇𝜙𝜙(ℎ𝑘𝑘) are loss function and fair constraint.

• Can be solved easily using gradient-based algorithms as each ℎ𝑘𝑘 is 
involved as a single term in the multiplication.
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Excess Risk Bound
• For any classification-calibrated surrogate function 𝜙𝜙 satisfying 

𝜙𝜙 0 = 1 and 𝑖𝑖𝑖𝑖𝑓𝑓
𝛼𝛼∈ℝ

𝜙𝜙 𝛼𝛼 = 0, any measurable function ℎ𝑘𝑘 for 

predicting 𝑌𝑌𝑘𝑘, we have

𝜓𝜓 𝑅𝑅 ℎ𝑘𝑘 − 𝑅𝑅∗ ≤ 𝑅𝑅𝜙𝜙 ℎ𝑘𝑘 − 𝑅𝑅𝜙𝜙∗

where 𝜓𝜓 is a non-decreasing function mapping from [0,1] to [0,∞).
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Experiments
• Data:

– Synthetic data: Manually define a causal graph and conditional probability 
tables. Data is generated by sampling each attribute in topological order 
according to the conditional probability.

– Adult: Build the causal graph by using the PC algorithm. Age is treated as 
𝑆𝑆, Workclass and Income are treated as 𝑌𝑌1 and 𝑌𝑌2.

• Baselines:
– Separate method: Each classifier is learned separately on training data.
– Serial method: Classifiers are learned sequentially following the 

topological order of the causal graph.
• Our method (joint method): formulates the optimization problem 

on the training data to learn all classifiers simultaneously
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Experiments

33

Table 1: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint methods 
on synthetic and Adult data (bold values indicate violation of fairness).



FAIR REPEATED DECISION MAKING 
WITH LONG-TERM IMPACTS

34
Y. Hu and L. Zhang. Achieving Long-term Fairness in Sequential Decision Making. AAAI, 2022.



Sequential Decisions

35

• In practice, decision making systems are usually operating in 
a dynamic manner such that the classifier makes sequential 
decisions over a period of time.

Example:

The bank uses the applicants’ credit 
scores to make loan decisions

The bank’s decisions will affect the 
applicants’ credit scores

Feedback Loop

Loan



Long-term Fairness
• Fair decision making should concern not only the fairness of a 

single decision but more importantly, whether a decision model 
can impose fair long-term effects on different groups. 

• This notion of fairness is referred to as long-term fairness in recent 
studies.

36



Challenges

37

Define notions and quantitative 
measures for long-term fairness.

Develop efficient learning 
algorithms for dynamic systems 
with repeated feedback loops.



Causality-based Long-term Fairness

38

• Based on SCM, we assume a time-lagged causal graph 𝐺𝐺
for describing the causal relationship among variables over time. 

Soft intervention:



Causality-based Long-term Fairness

39

• long-term fairness. Formulated as path-specific effects that are 
transmitted in the time-lagged causal graph along certain paths.

Definition 1 (Long-term Fairness). The long-term fairness 
of a decision model ℎθ is measured by 𝑃𝑃 �𝑌𝑌𝑡𝑡∗ 𝑠𝑠π+,θ − 𝑃𝑃 �𝑌𝑌𝑡𝑡∗ 𝑠𝑠π−, θ where π is a set 
of paths from 𝑆𝑆 to �𝑌𝑌𝑡𝑡∗ passing through 𝑿𝑿𝑟𝑟1, �𝑌𝑌1, … ,𝑿𝑿𝑟𝑟𝑡𝑡∗−1, �𝑌𝑌𝑡𝑡∗−1,𝑿𝑿𝑟𝑟𝑡𝑡∗, 𝑠𝑠π represents the 
path-specific hard intervention and θ represents the soft intervention through all paths.

𝑿𝑿
𝑿𝑿𝑖𝑖 irrelevant attributes: justifiable in decision making, evolved

autonomously or altered by external factors.

𝑿𝑿𝑟𝑟 relevant attributes: the remaining 
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• Two other requirements:

- Short-term Fairness.  The decision model should also satisfy certain
short-term fairness requirement at each time step to enforce local equality,
which may be stipulated by law or regulations.

Definition 2 (Short-term Fairness). The short-term fairness 
of a decision model ℎθ at time 𝑡𝑡 is measured by the causal 
effect transmitted through paths involved in time 𝑡𝑡 , i.e., 
𝑃𝑃 �𝑌𝑌𝑡𝑡 𝑠𝑠𝜋𝜋𝑡𝑡

+ ,θ − 𝑃𝑃 �𝑌𝑌𝑡𝑡 𝑠𝑠𝜋𝜋𝑡𝑡
− , θ , where 𝜋𝜋𝑡𝑡 = {𝑆𝑆 → �𝑿𝑿𝑟𝑟 →

�𝑌𝑌𝑡𝑡, 𝑆𝑆 → �𝑌𝑌𝑡𝑡} with redlining attributes �𝑿𝑿𝑟𝑟, 𝑠𝑠π is the path-
specific hard intervention and θ represents the soft 
intervention.
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• Two other requirements:

- Institution Utility. It is a natural desire for a predictive decision model to 
maximize the institution utility.

Definition 3 (Institute Utility). The institution utility of a 
decision model ℎθ is measured by the aggregate loss given 
by ∑𝑡𝑡=1𝑡𝑡∗ 𝐸𝐸 𝐿𝐿 𝑌𝑌𝑡𝑡, �𝑌𝑌𝑡𝑡 where 𝐿𝐿(�) is the loss function.



Soft Intervention for Model Deployment
• In all three definitions, we use soft intervention for modeling the 

decision model deployment. 
– We treat the deployment of the decision model at each time step as to 

perform a soft intervention on the decision variable. 
– The change to underlying population could be inferred as the post-

intervention distribution after performing the soft intervention.

42



Learning Fair Decision Model
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The goal is to learn a functional mapping ℎθ:  𝑆𝑆,𝑿𝑿𝑡𝑡 → 𝑌𝑌𝑡𝑡 parameterized with 
θ. By meeting the two requirements of institution utility and short-term 
fairness, the functional mapping will achieve long-term fairness.

Problem Formulation 1. The problem of fair sequential decision making is 
formulated as the constrained optimization:

arg min
θ
∑𝑡𝑡=1𝑡𝑡∗ 𝐸𝐸 𝐿𝐿 𝑌𝑌𝑡𝑡, �𝑌𝑌𝑡𝑡

s.t. 𝑃𝑃 �𝑌𝑌𝑡𝑡∗ 𝑠𝑠π+, θ = 1 − 𝑃𝑃 �𝑌𝑌𝑡𝑡∗ 𝑠𝑠π−, θ = 1 ≤ τ𝑙𝑙
𝑃𝑃 �𝑌𝑌𝑡𝑡 𝑠𝑠𝜋𝜋𝑡𝑡

+ , θ = 1 − 𝑃𝑃 �𝑌𝑌𝑡𝑡 𝑠𝑠𝜋𝜋𝑡𝑡
− ,θ = 1 ≤ τ𝑡𝑡, 𝑡𝑡 = 1, … , 𝑡𝑡∗

where τ𝑙𝑙 and τ𝑡𝑡 are thresholds for long-term fairness and short-term fairness 
constraints, respectively.



Performative Risk Optimization
• Solving the optimization problem in Problem Formulation 1 is not 

trivial. 
• Convert Problem Formulation 1 to the form of performative risk 

optimization.
• The general formulation of the performative risk optimization is

44



Performative Risk Optimization

45

• Reformulate utility, short-term fairness and long-term 
fairness in the form of performative risk.



Performative Risk Optimization
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Problem Formulation 2. The problem of fair sequential decision making is 
reformulated as the performative risk optimization:

arg min
θ
𝑙𝑙 θ = λ𝑢𝑢𝑙𝑙𝑢𝑢 θ + λ𝑙𝑙𝑙𝑙𝑙𝑙 θ + λ𝑠𝑠𝑙𝑙𝑠𝑠(θ)

where λ𝑢𝑢, λ𝑙𝑙 and λ𝑠𝑠 are weight parameters and satisfy λ𝑢𝑢 + λ𝑙𝑙 + λ𝑠𝑠 = 1.



Repeated Risk Minimization
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• Repeated risk minimization (RRM) is an iterative algorithmic heuristic for
solving the performative risk optimization problem.



Convergence Analysis of RRM
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• The convergence of the RRM algorithm depends on the smoothness and 
convexity of the loss function, as well as the sensitivity of the distribution to 
the parameters.

Theorem 1. Suppose that surrogated loss function 𝜑𝜑 ∘ ℎ � is 𝛽𝛽 −jointly 
smooth and 𝛾𝛾-strongly convex, and suppose that 𝑿𝑿𝑡𝑡+1 are 𝑐𝑐-sensitive for 
any 𝑡𝑡, then the repeated risk minimization converges to a stable point at a 
linear rate, if 2𝑚𝑚𝑐𝑐(𝑡𝑡∗−1) < β

γ
.
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- Logistic Regression (LR): An unconstrained logistic regression model 
which takes user features and labels from all time steps as inputs and 
outputs.

- Fair Model with Demographic Parity (FMDP): On the basis of the logistic 
regression model, fairness constraint is added to achieve demographic 
parity.

- Fair Model with Equal Opportunity (FMEO): On the basis of  the logistic 
regression model, fairness constraint is added to achieve equal opportunity.

• Baselines:



Experiments
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We simulate a process of bank loans following the above time-lagged causal 
graph, where 𝑆𝑆 is the protected attribute like race, 𝑿𝑿𝑡𝑡 represents the financial 
status of applicants, and 𝑌𝑌𝑡𝑡 represents the decisions about whether to grant 
loans.

We sample the predicted decisions from: 

𝑿𝑿𝑡𝑡+1 is generated according to the update rule below:

• Synthetic Data:



Experiments
• Semi-synthetic Data:

• Use the Taiwan credit card dataset (Yeh and Lien 2009) as the 
initial data at t = 1

• Extract 3000 samples and choose two features PAY AMT1 and PAY 
AMT2

• Generate a 4-step dataset using similar update rule

51

Yeh, I.-C.; and Lien, C.-h. 2009. The comparisons of data mining techniques for the predictive accuracy of probability of 
default of credit card clients. Expert Systems with Applications, 36(2): 2473–2480.
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• Results of Synthetic Data:



Experiments
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• Results of Semi-synthetic Data:



FAIR RECOMMENDATION IN ONLINE 
STOCHASTIC SETTINGS

54
W. Huang, L. Zhang, and X. Wu. Achieving Counterfactual Fairness for Causal Bandit. AAAI, 2022.



Bandit Recommendation
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 Bandit Algorithm  UCB Method

• At each round, updates the upper confidence 
bound (UCB) of the reward for each arm.

• Policy: Pull the arm with the largest UCB at 
each round.

• Time horizon: 𝑡𝑡 = 1,2, … ,𝑇𝑇

• At each time step:
- Pull an arm 𝑎𝑎𝑡𝑡
- Receive a reward 𝑟𝑟𝑡𝑡

Goal: Maximize  ∑𝑡𝑡=1𝑇𝑇 𝑟𝑟𝑡𝑡

Policy: Implies which arm to pull at each round.

Evaluation metric: Cumulative regret
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 Counterfactual Fairness

Similar Reward?

Similar profiles & history

Goal: Achieve user-side individual fairness for 
customers in bandit online recommendation.

Will customers with similar profiles receive 
similar rewards regardless of their protected 
attributes and recommended items?  

Counterfactual Fairness in Bandits



Causal Bandits

𝑨𝑨 : Arm features
𝐗𝐗 : User features
𝑅𝑅 : Reward
𝐈𝐈 : Intermediate features 
between 𝑨𝑨 and 𝑅𝑅

57



Modeling Arm Selection via Soft Intervention
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𝑨𝑨 : Arm features
𝐗𝐗 : User features
𝑅𝑅 : Reward
𝐈𝐈 : Intermediate features between 𝑨𝑨 and 𝑅𝑅
𝜋𝜋 : Soft intervention conducted on arm selection

• Able to capture the complex causal relationship.
• Flexible in terms of the functional form.
• Either deterministic or stochastic.

Advantages 

Strong generalization property 
to depict various bandit algorithms by 
adopting different soft interventions.

• An arm selection strategy conducted on 𝑨𝑨 while user features 𝐗𝐗 and all 
other relationships in the causal graph are unchanged.

Definition of 𝜋𝜋



Modeling Arm Selection via Soft Intervention
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• Expected reward under soft intervention 𝜋𝜋

Distribution defined by policy 𝜋𝜋

Decomposition based on soft intervention

𝑨𝑨 : Arm features
𝐗𝐗 : User features
𝑅𝑅 : Reward
𝐈𝐈 : Intermediate features between 𝑨𝑨 and 𝑅𝑅
𝜋𝜋 : Soft intervention conducted on arm selection



Counterfactual Fairness in bandit setting: 
Definition and Bound 

6161

• A protected attribute: 𝑆𝑆 ∈ 𝐗𝐗

• The counterfactual reward by setting 𝑆𝑆 = 𝑠𝑠∗:

• The counterfactual discrepancy regarding to a policy

How to measure individual level user-side fairness in terms of the reward?



Counterfactual Fairness in bandit setting: 
Definition and Bound 
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• Definition of a 𝜏𝜏-counterfactually fair policy  

• Bound under the unidentifiable case 

How to measure individual level user-side fairness in terms of the reward?



F-UCB: A Counterfactually Fair Causal Bandit 
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Goal: Achieving counterfactual fairness for causal bandit.

Main idea: Select optimal policy in a counterfactually safe policy subspace at each round.

• Estimated reward mean of a policy 

• Estimated counterfactual reward

• Estimated fairness discrepancy

(1)

(2)



F-UCB: A Counterfactually Fair Causal Bandit 
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Goal: Achieving counterfactual fairness for causal bandit.

Main idea: Select optimal policy in a counterfactually safe policy subspace at each round.

• Construction of the safe policy space:

where 

• Policy taken at each round:  
(3)



Experiment Results on Adult-YouTube Video 
Dataset

6666

• Adult Dataset
- 31,561 instances: 21,790 males and 10,771 females.
- Each with 8 categorical variables and 3 continuous variables.

• Youtube video Dataset
- 1,580 instances.
- Each having 6 categorical features. 

Regret for Fair-LinUCB ≈ 250 

Huang, W.; Labille, K.; Wu, X.; Lee, D.; and Heffernan, N.2020. Achieving User-Side Fairness in Contextual Bandits. Big Data 2021.



Conclusions and Future Directions
• Explore fair sequential decision making on two dimensions: 

decision models are deployed sequentially and data arrive 
sequentially.

• Show that Structural Causal Model can be used as a fair ML 
framework, where soft intervention is adopted as a general 
methodology for modeling model deployment.

• Crosspoint of two dimensions: fair multi-stage recommendation 
where customers are recommended a sequence of items from 
different stages regarding different but related topics.
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