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Fair Machine Learning

Discrimination refers to unjustified distinctions of individuals
based on their membership in a certain group.
Federal Laws and regulations disallow discrimination on several

grounds:
— Gender, Age, Marital Status, Race, Religion or Belief, Disability or Iliness

— These attributes are referred to as the protected attributes.
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Static vs. Sequential Setting

 Most studies are based on static settings where one-shot decisions
are made on tasks such as classification and regression.

* |n practical situations, decision-making is more of a sequential
nature.

— Decision models are deployed and make decisions sequentially.

— Data arrive and are observed sequentially.

* Fair machine learning in the sequential setting is underexplored.
— Multiple decision models connected in a partial order.
— Single decision model executed repeatedly and creates feedback loops.
— Online recommendation where customers arrive in a sequential manner.



Background

e Structural Causal Model (Pearl, 1995): A mathematical framework
for describing the causal mechanisms of a system as a set of
structural equations.

 Describe how causal relationships and causal effects can be
inferred from observed data.

Causal Graph G

Elii é Causal Effect

Observed Data
P(v)




Structural Causal Model

A causal modelis triple M =< U,V, F >, where
— U is a set of exogenous (hidden) variables whose values are determined
by factors outside the model;

— V ={Xy,--+,X;, -+ }is a set of endogenous (observed) variables whose
values are determined by factors within the model,

— F={fy,-, fi,--+ } is a set of deterministic functions where each f; is a
mapping from U X (V \ X;) to X;. Symbolically, f; can be written as

x; = fi(pa;, u;)

where pa; is a realization of X;’s parentsinV, i.e., Pa; €V, and u; is a
realization of X;’s parentsin U, i.e.,, U; € U.



Causal Graph

Each causal model M is associated with a direct graph G = (V, &),
where
— 7V is the set of nodes represent the variables U U V in M;

— & isthe set of edges determined by the structural equations in M: for X;,
there is an edge pointing from each of its parents Pa; U U; toit.
* Each direct edge represents the potential direct causal relationship.
* Absence of direct edge represents zero direct causal relationship.

Assuming the acyclicity of causality, G is a directed acyclic graph
(DAG).



A Causal Model and Its Graph

Observed VariablesV = {I,H,W,E} Hidden Variables U = {U;, Uy, Uy, Ug}
Up
Model (M) Graph (G) _pe

,
e

L

i = fi(u) Ung”
h = fy(i,uy) |
w = fy (h,uy)

e = fg(i,h,w,ug)

E (Exam Grade)

H (Hour of Study)

W (Working Strategy)

Assume [ and H are confounded.



A Markovian Model and Its Graph

Observed VariablesV = {I,H,W,E} Hidden Variables U = {U;, Uy, Uy, Ug}

Model (M) Graph (G)
i = fi(u) o
h = I, U
fH( H) H (Hour of Study) E (Exam Grade)

w = fy(h uy)
e = fE(i' h' W'uE)

W (Working Strategy)

Assume no hidden confounder.
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Causal Inference and (Hard) Intervention

 The basic operation of manipulating a causal model.

— Simulate the manipulation of the physical mechanisms by some physical
interventions or hypothetical assumptions.

— Forces some observed variables X € V to take certain constants x.
* Mathematically formulated as do(X = x) or simply do(x).

* For an observed variable Y disjoint with X, its interventional
variant under intervention do(x) is denoted by Yy, or Y,.

* The effect of intervention on all other observed variables Y = V\X
is represented by the post-intervention distribution of Y.
— Denoted by P(Y = y|do(X = x)) or simply P(y|do(x));
— Orequivalently P(Yy_, = y) orsimply P(y,).

11
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Soft Intervention

Force variables to take a functional relationship in
responding to some other variables.

Example: do(Y = hg(X)) is a soft intervention that
substitutes structural equation associated with Y by hy(X).

Effect of soft intervention is represented by post-intervention
distributions.

Under certain assumptions (e.g., Markovian), both hard and
soft interventional distributions can be computed from
observed data.

12



Total (Causal) Effect

The total effect measures the causal effect transmitted along all causal paths.
The total effect of X on Y under two interventions do(x;), do(x,):

TE(x2,%1) = P(yldo(x;)) — P(y|do(xy))
Example:
P(E = ‘A’|do(H = 2)) P(i)

do(H = 2) E
P(el|li,H =2,w)

w
P(w|H =2)
13



Path-Specific Effect

Path-specific effect measures the causal effect transmitted along certain
causal paths.
Given a subset of causal paths m, the causal effect of X on Y transmitted along
7 under two interventions do(x;) (a.k.a., reference), do(x,) :

SEq(x2,%1) = P(yldo(x;]7)) — P(yldo(xq))

Example:
P(E = Aldo(H = 2|,)) Péi)
do (H =2 |n) i E
P(eli,H=1,w)
w

P(w|H =2)
14



Counterfactual Effect

Counterfactual effect measures the causal effect while we have certain
observations or evidence.

Counterfactual effect of X on Y under two interventions do(x,), do(x,) given
that we observe O = o:

CE (x1,%210) = P(yx,| 0) — P(yy,| 0)
Example:

do(H = 2)
P(E = ‘A)H=2|H - 1,E - ‘B,)

15
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Causality-based Fairness Notions

Protected attribute: § = {s™,s7}
Profile attributes: X
Decision: Y

Demographic parity:
TE(s*,s7) =0
Direct/indirect non-discrimination
SE_(s*,s7)=0
Counterfactual fairness
CE(s*,s7|x) =0

16



FAIR MULTIPLE DECISION MAKING

Y. Hu, Y. Wu, L. Zhang, and X. Wu. Fair Multiple Decision Making through Soft Interventions. NeurlPS, 2020.
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Problem Setting

Consider multiple decision models such that:
— One decision model may influence one another;
— Feature distribution may change due to deployment of decision models;

All decision models may contain discrimination, either be
introduced by themselves or transmitted from upstream models.

Objective: Build fair models for all decision-making tasks.

18
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Challenge

Building a fair model for each task independently may not work.

Toy example:

X1 >Y ->X,-Y

19



B Toy Example: X; - Y, - X, - Y,
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Step 1: data collection




Toy Example: X; - Y, = X, = 1,

4 )

: (X1, Y1) = hy (fair classifier)

X,,Y,) = h, (fair classifier
L (X2, Y2) 2 ) )

Step 1: data collection Step 2: offline training and evaluation (separately)




Toy Example: X; - Y, = X, = 1,

4 A
: (X1, Y1) = hy (fair classifier)
X,,Y,) = h, (fair classifier
L (X2, Y2) 2 ) )
Step 1: data collection Step 2: offline training and evaluation (separately)
4 )
259 (fair)
. hy
X, —Y, (unfair)
\_ /

Step 3: deploy and make decisions on new data



Toy Example: X; - Y, = X, = 1,

4 A
: (X1, Y1) = hy (fair classifier)
X,,Y,) = h, (fair classifier
L (X2, Y2) 2 ) )
Step 1: data collection Step 2: offline training and evaluation (separately)
Why ? 4 A

. hi

P R X, —7 (fair)
= Decision Y; will affect values of X, "
~ 2 A

% X, —Y, fai
» Distribution X, # Distribution £, _ 27— man

Step 3: deploy and make decisions on new data



Proposed Solution

Core idea: leverage Pearl’s structural causal model, treat each

decision model as a soft intervention, and infer the post-
intervention distributions to formulate the loss function as well as

the fairness constraints.

Advantages:
— Learn multiple fair classifiers simultaneously and only require static
training data.
— Can employ off-the-shelf classification models and optimization
algorithms.
— Achieve causal fairness (total effect in this work).
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Using Soft Interventions to Simulate
Decision Model Deployments

Y; = hy(Xy) Y, = hy(X3) | dO(Y1 = h1(X1))

S > Y1 Y2

ey

Xl > Xg

X | dO(Y1 = h1(X1))

* In general, we have [ decisions {Y;,-:-, Y;}.
* For each decision Y}, we build a classifier h; (z;,).

* The soft intervention for deploying all these models is do(h4, ---

'hl)'

25



o Loss Function and Fair Constraints

UNIVERSITY OF
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* Traditionally, classification error of classifier h: Z — Y is

R(h) = Ez|P(Y = 1|2) 15«0 + P(Y = 0]2)11(5)50]

* Under soft intervention of deploying all models, for classifier h;,

R(hi) = Ez, ja0(hy-mp|PYe = 1z ) 1ncz0<0 + P = 012,) 12,50

* Similarly, fairness constraints is given by total effect

TE(hy) = P(Yy = 1|do(S =1,hq,-+-, b)) — P(Y, = 1|do(S = 0,hq, -+, b))

26



Deriving Loss Function and Fair Constraints
with Observed Data

e Loss function

P(y'y |s, @i, X'y
P(yflzi)d(hi(ze) Y T é(=hi(z) [ ¢(hi(z)) (¥, | )

R(f)(h'k’) = E
; S.X! P / . e“)',Xf .
Y, YieYs, ) YieYy ., Xi€Xy, x,ls %)

Y

' [)(yf i S'JJ:?',«.X; )
Py, |zr)o(—hi(zr)) Z H d(—hi( H o(hi(zi)) H X;\ . ,X*‘ .

P(y's |s,xs.)
v,\YEY 2y, YGY}*T,?;_,-_ X.,-_Exfyk X, 19 Xx,

e Fairness constraint

- Py’ . -.‘.a‘—+_,.'!..'?;,X'r .
To(h) = , I [ —hi(zk) Z H O(—hi(z;)) H o(hi(zi)) H (yx}| : ,X*)}

P st,x
. YiEY a; YGY;q,;l’h: X,eX (YX.,-_| ’ X.,-_)

Py, |51, Xy
+ E (hi(zk) O(—hi(z;)) O(hilz; : —= | — 1.
e [ )2 H [[ovat 1 =5 1)

Y;. Yi GY Y, Y(:Y;,k Y, X, eX
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& Problem Formulation for Fair Multiple

AKARAS Decision Making
* The problem of fair multiple decision making forY = {Y;,---,Y;}is
formulated as the following constrained optimization problem:

— < <
m}lrlleﬂz Rp(hy) s.t. Vk,—1 < Tp(hy) < 7

where Ry (hy) and Ty (hy) are loss function and fair constraint.

* Can be solved easily using gradient-based algorithms as each hy, is

involved as a single term in the multiplication.
30



o Excess Risk Bound

UNIVERSITY OF
ARKANSAS

* For any classification-calibrated surrogate function ¢ satisfying
$(0) = 1and inf ¢(a) = 0, any measurable function hy, for

a€R
predicting Y;, we have

Y(R(hg) — R*) < Ryp(hy) — Ry

where Y is a non-decreasing function mapping from [0,1] to [0, o).

31



Experiments

Data:

— Synthetic data: Manually define a causal graph and conditional probability
tables. Data is generated by sampling each attribute in topological order
according to the conditional probability.

— Adult: Build the causal graph by using the PC algorithm. Age is treated as
S, Workclass and Income are treated as Y; and ¥5.
Baselines:
— Separate method: Each classifier is learned separately on training data.

— Serial method: Classifiers are learned sequentially following the
topological order of the causal graph.

Our method (joint method): formulates the optimization problem
on the training data to learn all classifiers simultaneously

32



Experiments

Table 1: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint methods
on synthetic and Adult data (bold values indicate violation of fairness).

Synthetic Adult

Phasec Uncons. | Separate | Serial | Joint | Uncons. | Separate | Serial | Joint
hy ACF: (%) 80.32 75.35 75.35 | 75.35 55.71 55.64 55.63 | 55.63

Train Unfairness 0.15 0.01 0.01 0.01 0.15 0.05 0.05 0.05
ho Acc. (%) 90.13 75.79 84.02 | 82.77 76.75 71.17 68.90 | 69.31
Unfairness 0.23 0.04 0.03 0.04 0.24 0.10 0.10 0.10

hy AC::: (%) 80.70 75.54 75.54 | 75.54 55.63 55.56 55.57 | 55.57

Test Unfairness 0.15 0.01 0.01 0.01 0.15 0.05 0.05 0.05
ho AC::: (%) 89.95 77.06 84.16 | 82.09 77.07 73.33 68.91 | 69.40
Unfairness 0.13 0.09 0.03 0.03 0.23 0.17 0.10 0.10

33



FAIR REPEATED DECISION MAKING
WITH LONG TERM IMPACTS

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn



Sequential Decisions

In practice, decision making systems are usually operating in
a dynamic manner such that the classifier makes sequential
decisions over a period of time.

Example:

The bank uses the applicants’ credit

P
/\ ,’ scores to make loan decisions
." Loan BANK !

==

' ‘ > \
. I I l l Y« _ The bank’s decisions will affect the .- /

— applicants’ credit scores

Feedback Loop

7/

35



Long-term Fairness

Fair decision making should concern not only the fairness of a
single decision but more importantly, whether a decision model
can impose fair long-term effects on different groups.

This notion of fairness is referred to as long-term fairness in recent
studies.

36



Challenges

Define notions and quantitative
measures for long-term fairness.

-

J
H<©

Develop efficient learning
algorithms for dynamic systems
with repeated feedback loops.

37
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Causality-based Long-term Fairness

 Based on SCM, we assume a time-lagged causal graph G
for describing the causal relationship among variables over time.

S
X! X2 X3
y! y? Y3

Soft intervention:

38



Causality-based Long-term Fairness

* long-term fairness. Formulated as path-specific effects that are
transmitted in the time-lagged causal graph along certain paths.

X; irrelevant attributes: justifiable in decision making, evolved
X { autonomously or altered by external factors.

X, relevant attributes: the remaining

Definition 1 (Long-term Fairness). The long-term fairness
of a decision model hg is measured by P ( Yt (s, 9)) — P ( Yt (sz, 9)) where mt is a set

of paths from S to Y!* passing through X%, V1, ..., Xt*=1, Yt*=1 Xt* s represents the
path-specific hard intervention and 6 represents the soft intervention through all paths.

39



Loss Function and Short-term Fairness

e Two other requirements:

- Short-term Fairness. The decision model should also satisfy certain
short-term fairness requirement at each time step to enforce local equality,
which may be stipulated by law or regulations.

Definition 2 (Short-term Fairness). The short-term fairness g

of a decision model hg at time t is measured by the causal l

effect transmitted through paths involved in time t , i.e., - -
P ( Ye(st, 9)) —P ( Ye(s, 9)) ,wherent ={§ - X, -

Yt S — Y} with redlining attributes X, sy is the path- v') (2
specific hard intervention and 0 represents the soft 1
intervention. o ho

40



Loss Function and Short-term Fairness

e Two other requirements:

- Institution Utility. It is a natural desire for a predictive decision model to
maximize the institution utility.

Definition 3 (Institute Utility). The institution utility of a l
decision model hg is measured by the aggregate loss given X! X

by »:E 4 E[L(Yt, ?t)] where L(-) is the loss function.




Soft Intervention for Model Deployment

In all three definitions, we use soft intervention for modeling the
decision model deployment.

— We treat the deployment of the decision model at each time step as to
perform a soft intervention on the decision variable.

— The change to underlying population could be inferred as the post-
intervention distribution after performing the soft intervention.

42



Learning Fair Decision Model

The goal is to learn a functional mapping hg: (S,X%) — Y! parameterized with
0. By meeting the two requirements of institution utility and short-term
fairness, the functional mapping will achieve long-term fairness.

Problem Formulation 1. The problem of fair sequential decision making is
formulated as the constrained optimization:

arg min %i1; E[L(YS, 7°)]
st. P(Y2(sf,8) =1) —P(V"(s,0) = 1) <7
P(Yi(s',0)=1)—P(V'(s:0)=1)<t,t =1,..,t"

where T; and t; are thresholds for long-term fairness and short-term fairness
constraints, respectively.

43
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Performative Risk Optimization

Solving the optimization problem in Problem Formulation 1 is not
trivial.

Convert Problem Formulation 1 to the form of performative risk
optimization.
The general formulation of the performative risk optimization is

PR(O) =  E 0(Z:0).

44



5 Performative Risk Optimization

UNIVERSITY OF
ARKANSAS

* Reformulate utility, short-term fairness and long-term
fairness in the form of performative risk.

L(O) =D o B [ (VoK 5))]




Performative Risk Optimization

Problem Formulation 2. The problem of fair sequential decision making is
reformulated as the performative risk optimization:

arg mein [(8) = AL, (8) +A,1;(0) +A,l,(0)

where A, A; and A, are weight parameters and satisfy A, + A; + A, = 1.

46



Repeated Risk Minimization

* Repeated risk minimization (RRM) is an iterative algorithmic heuristic for
solving the performative risk optimization problem.

Algorithm 1: Repeated Risk Minimization

Input : Dataset D = {(S, X", Y*)}i_,, time -lagged
causal graph G, convergence threshold o
Output: The stable model hy

1 Train a classifier on D according to Eq. (2) without the
soft intervention to obtain the initial parameter 6p;

2 1+ 0;

3 repeat

Sampled the post-intervention distributions

P (Xt* (s1, 91)) and P (Xt* (sx, 9?;));
5 Sampled the post-intervention distributions
P (Xt(si, 9?;)) and P (Xt(s;r \ 93-)) for each t;

6 Minimize [(#) according to Eq. (2) to obtain #;41;
7 A = [0it1 — 0i|2;

8 1 — 1+ 1;

9 until A < 9;

10 68« 6;;

11 return hg;




Convergence Analysis of RRM

 The convergence of the RRM algorithm depends on the smoothness and

convexity of the loss function, as well as the sensitivity of the distribution to
the parameters.

Theorem 1. Suppose that surrogated loss function (¢ o h)(-) is B —jointly
smooth and y-strongly convex, and suppose that Xt*! are c-sensitive for
any t, then the repeated risk minimization converges to a stable point at a

linear rate, if 2mc(t*—1) < % .

48



Experiments

e PBaselines:

- Logistic Regression (LR): An unconstrained logistic regression model
which takes user features and labels from all time steps as inputs and
outputs.

- Fair Model with Demographic Parity (FMDP): On the basis of the logistic
regression model, fairness constraint is added to achieve demographic

parity.

- Fair Model with Equal Opportunity (FMEO): On the basis of the logistic
regression model, fairness constraint is added to achieve equal opportunity.

49



Experiments

Synthetic Data:

We simulate a process of bank loans following the above time-lagged causal
graph, where S is the protected attribute like race, Xt represents the financial
status of applicants, and Y represents the decisions about whether to grant

loans.

We sample the predicted decisions from:
P(Y") = o(hg- (X, S)), Yt ~ 2 Bernoulli( P(Y?)) — 1.
Xt*1is generated according to the update rule below:

(Xt _e.0t4b Vi=1Yt=_1
Xt =0 Xt+e 004+b Yi=1Y'=1
X'+ Yit=—1

50



Experiments

* Semi-synthetic Data:

* Use the Taiwan credit card dataset (Yeh and Lien 2009) as the
initial dataatt=1

e Extract 3000 samples and choose two features PAY AMT1 and PAY
AMT?2

 Generate a 4-step dataset using similar update rule

Yeh, 1.-C.; and Lien, C.-h. 2009. The comparisons of data mining techniques for the predictive accuracy of probability of
default of credit card clients. Expert Systems with Applications, 36(2): 2473-2480.
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Experiments
e Results of Synthetic Data:

Table 1: Accuracy, short-term and long-term fairness of dif-
ferent algorithms on the synthetic dataset.

Alg. | Metric Time steps .
=1 | t=2 | t=3 | t=4 | t=5 |
Acc | 0912 [ 0.894 | 0917 | 0.921 | 0.917 |
RL | Short | 0.152 | 0.160 | 0.166 | 0.164 | 0.174 s
Long | 0.058 | 0.117 | 0.173 | 0.246 | 0.340 g,

Acc 0.735 | 0.706 | 0.704 | 0.708 | 0.725
FMDP Short | 0.212 | 0.216 | 0.224 | 0.220 | 0.232
Long 0.180 | 0.306 | 0.376 | 0.431 | 0.481
Acc | 0.829 [ 0.790 | 0.795 | 0.800 | 0.814 ; W
FMEO | Short | 0.010 | 0.010 | 0.010 | 0.014 | 0.020

Long | 0.080 | 0.122 | 0.190 | 0.276 | 0.352 Figure 2: The convergence results for different values of e
Acc | 0.801 | 0.754 | 0.729 | 0.707 | 0.692 on the synthetic dataset.

Ours Short | 0.012 | 0.008 | 0.012 | 0.008 | 0.002

Long | 0.040 | 0.024 | 0.020 | 0.012 | 0.002
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Experiments

e Results of Semi-synthetic Data:

Table 2: Accuracy, short-term and long-term fairness of dif-
ferent algorithms on the semi-synthetic dataset.

Time steps

t= t=2 | t=3 =4
Acc 0.828 | 0.826 | 0.841 | 0.816
RL Short | 0.015 | 0.018 | 0.021 | 0.012
Long | 0.038 | 0.088 | 0.243 | 0.433

Acc 0.830 | 0.843 | 0.846 | 0.841
FMDP | Short | 0.063 | 0.066 | 0.075 | 0.069
Long | 0.038 | 0.076 | 0.223 | 0.397

Acc 0.824 | 0.830 | 0.830 | 0.813
FMEO | Short | 0.072 | 0.075 | 0.087 | 0.078
Long | 0.006 | 0.045 | 0.156 | 0.295

Acc 0.648 | 0.648 | 0.680 | 0.687
Ours Short | 0.006 | 0.006 | 0.003 | 0.006
Long | 0.064 | 0.043 | 0.016 | 0.003

Alg. Metric




FAIR RECOMMENDATION IN ONLINE
STOCHASTIC SETTINGS



Bandit Recommendation

% Bandit Algorithm % UCB Method

[//;/)L/L C,om/j}lwce Bowno(é(/cg)

e Time horizon:t =1,2,...,T

« At each time step:
- Pull an arm a,
- Receive a reward r;

Goal: Maximize YI_,1;

Policy: Implies which arm to pull at each round. * Ateach round, updates the upper confidence
T bound (UCB) of the reward for each arm.
Evaluation metric: Cumulative regret Rz = > (fta* — f1a,) . _
=1 * Policy: Pull the arm with the largest UCB at
each round.

55



Counterfactual Fairness in Bandits

«» Counterfactual Fairness

Will customers with similar profiles receive
similar rewards regardless of their protected
attributes and recommended items?

o Similar profiles & history ."

=

Similar Reward?

Goal: Achieve user-side individual fairness for
customers in bandit online recommendation.

56



Causal Bandits

A : Arm features
X : User features
R : Reward

I : Intermediate features
between 4 and R

57



Modeling Arm Selection via Soft Intervention

: Arm features

: User features

: Reward

: Intermediate features between 4 and R

: Soft intervention conducted on arm selection

I
L,

™

S
*R
e

S = o X

Definition of 71

* An arm selection strategy conducted on A while user features X and all
other relationships in the causal graph are unchanged.

Advantages
» Able to capture the complex causal relationship. Strong generalization property
» Flexible in terms of the functional form. ]» to depict various bandit algorithms by
« Either deterministic or stochastic. adopting different soft interventions.

58



Modeling Arm Selection via Soft Intervention

I
R .

X

« Expected reward under soft intervention # | Decomposition based on soft intervention

pr =E

7

: Arm features

: User features

: Reward

: Intermediate features between 4 and R

: Soft intervention conducted on arm selection

S =X

m)|xi] = ZP a|Xt ElR(a)x] = Ea~r [E[R(a)|x]]

Distribution defmed by policy 7

59



Counterfactual Fairness in bandit setting:
Definition and Bound

How to measure individual level user-side fairness in terms of the reward?

« A protected attribute: S € X
» The counterfactual reward by setting S = s*: E[R(7, s*)|x]

» The counterfactual discrepancy regarding to a policy

A = E[R(m, sT)|x¢] — E[R(m, s7)|x¢]

61



Counterfactual Fairness in bandit setting:
Definition and Bound

How to measure individual level user-side fairness in terms of the reward?

 Definition of a t-counterfactually fair policy

A policy 7 is counterfactually fair for an individual arrived if A, = 0. The
policy is 7- counterfactually fair if |A,| < 7 where 7 is the predefined fairness

threshold.

 Bound under the unidentifiable case

If there exists a non-empty set B C X\{S} which are descendants of S, then
ta.s* = E[R(a,s™)|x] is bounded by

Z mbin{E[R\s*, w\st|} - P(2]|xt.a) < pfa.se < Z mSX{E{R‘S*» w\st]} - P(2]%t.4)
Z Z
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F-UCB: A Counterfactually Fair Causal Bandit

Goal: Achieving counterfactual fairness for causal bandit.

Main idea: Select optimal policy in a counterfactually safe policy subspace at each round.

« Estimated reward mean of a policy i(t) = Eaur

S i) - p<zyxt,a)] (1)
Z

« Estimated counterfactual reward — ji.(t) = - (t) - P(z]s*, x0.0\5¢)
Z

» Estimated fairness discrepancy Ar(t) = [Banrlilasr ()] = Banrlitas (D] (2)

Algorithm 2 F-UCB: Fair Causal Bandit

1: Input: Policy space I, fairness threshold 7, confidence level parameter §, original
causal Graph G with domain knowledge
2: Find the d-separation set W with minimum subset Z in terms of domain space.
3: fort=1,2,3,..., T do
4: for m € Il; do
5: Compute the estimated reward mean using and the estimated
fairness discrepancy using [Equation 2

6:  Determine the conservative fair policy subspace ®;.
7:  Find the optimal policy following Equation 3 within ®,.
8:  Take action a; ~ m; and observe a real-valued payoff r, and a d-separation set

value wy. 63
9:  Update [iw(t) for all w € W.




F-UCB: A Counterfactually Fair Causal Bandit

Goal: Achieving counterfactual fairness for causal bandit.

Main idea: Select optimal policy in a counterfactually safe policy subspace at each round.

« Construction of the safe policy space: &, = {m:UCBx_(t) <7}

8log(1/0)
where UCBa_( Z l\ng/ P(z[x.4)

Algorithm 2 F-UCB: Fair Causal Bandit

1: Input: Policy space II, fairness threshold 7, confidence level parameter ¢, original
: o causal Graph G with domain knowledge
* POlle taken at eaCh round~ 2: Find the d-separation set W with minimum subset Z in terms of domain space.
3: fort=1,2,3,...,T do

7y = arg max E, - [UCBg(t)] (3) 4 forn el do

5: Compute the estimated reward mean using Equation 1 and the estimated
mell: fairness discrepancy using Equation 2.

6: Determine the conservative fair policy subspace ;.
7:  Find the optimal policy following|Equation 3 |within ®;.
8: Take action a; ~ m; and observe a real-valued payoff r, and a d-separation set

value wy.

9:  Update fiw(t) for all w € W.
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Experiment Results on Adult-YouTube Video
Dataset

Adult Dataset
31,561 instances: 21,790 males and 10,771 females.
Each with 8 categorical variables and 3 continuous variables.

Youtube video Dataset
- 1,580 instances.
Each having 6 categorical features.

Regret air Decisions
@ 7 [F-UCB [{F-UCB|] FairLinUCB
0.1 | 361.43 0 2053
0.2 | 332.10 0 1221
Caze ) G ) e ) Craines ) 03 | 32312 || 0O 602
0.4 | 303.32 0 82
0.5 | 296.19 0 6
Regret for Fair-LinUCB =~ 250

Huang, W.; Labille, K.; Wu, X.; Lee, D.; and Heffernan, N.2020. Achieving User-Side Fairness in Contextual Bandits. Big Data 2021.
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Conclusions and Future Directions

Explore fair sequential decision making on two dimensions:
decision models are deployed sequentially and data arrive
sequentially.

Show that Structural Causal Model can be used as a fair ML
framework, where soft intervention is adopted as a general
methodology for modeling model deployment.

Crosspoint of two dimensions: fair multi-stage recommendation
where customers are recommended a sequence of items from
different stages regarding different but related topics.
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