Random Isn't Always Fair:

Candidate Set Imbalance & Exposure Inequality in Recommender Systems

> Amanda Bower, Kristian Lum, Tomo Lazovich, Kyra Yee, Luca Belli Twitter

> > FAccTRec 2022

Amanda Bower [speaker] Pronouns: She/Her

@amandarg___

Kristian Lum Pronouns: She/Her @KLdivergence Tomo Lazovich Pronouns: They/Them @laughsovich

Kyra Yee Pronouns: She/Her @Kyra_Yee Luca Belli Pronouns: He/Him @_lucab

Impact of Recommender Systems

Historically items are ordered by the **Probability Ranking Principle to maximize utility to the consumer**...

Item A Item B Item C ...while the **producers** of the items are largely ignored....

...despite economic and social impacts to producers.

Access to Multi-billion Dollar Creator Economy

Occupational stereotyping In Image Search

Factors Contributing to Inequalities

Naturally only a few items get exposure

Limited Rec Spots

Who to follow

@odsc

cat with confusing au...

Follow

Limited User Attention

Ø publicdomainvectors.or $\bigcirc \bigcirc$

User Intention

User Trust Bias

Probability Ranking **Principle**

(using estimated relevance scores)

+

Inequalities $\bigcirc \bigcirc$ 96 50 30

One Standard Solution: Stochasticity

So sampling rankings from a uniform distribution should be the most "fair"?

Uniformly Random Rankings Can Increase Inequality

	1	2	3	4	5	6	7	8	9	10
First	А	В	С	D	Е	F	G	н	I	J
Second	В	С	D	E	F	G	Н	I	J	А
Third	С	D	Е	F	G	н	I	J	А	В
Fourth	J	J	J	J	J	J	J	А	В	С

Deterministic Rankings for Consumers

popular producer

Expected Producer Exposure

	А	В	С	D	E	F	G	н	I	J
Ranking	1	1	1	1	1	1	1	1	1	1
Random	1	1	1	3/4	3/4	3/4	3/4	3/4	3/4	2 1/2

What's going on?

In practice, ranking is typically a two-step process

Literature focuses on step #2 with the exception of Wang & Joachims '22

A line of literature focuses on fairness at an **individual ranking level** as opposed to the **global level**.

Our Contribution

We propose a post-processing algorithm to sample rankings from a class of ranking distributions.

Producerexposure equality

Interpolate & leverage global information about how often a candidate appears in all the candidate sets Maximal consumerutility

Plackett-Luce Sampling

J

Set-up:

- n users: $U := \{u_i\}_{i=1}^n$
- m items: $V := \{v_i\}_{i=1}^m$
- For every user $u \in U$ let $\{v_{u_i}\}_{i=1}^{m_u}$ be the candidate set of m_u items that need to be ranked
- Let the corresponding set of relevance scores be given by $\{r_{u_i}\}_{i=1}^{m_u}$
- Let $\beta \in \mathbb{R}$

Algorithm:

For each user $u \in U$ sample their ranking from the (scaled) Plackett-Luce distribution where the probability of sampling the ranking $(v_{u_1}, v_{u_2}, \ldots, v_{m_u})$ is

"Evaluating Stochastic Rankings with Expected Exposure" - Diaz et al., 2020

"Joint Multisided Exposure Fairness for Recommendation" - Wu et al. 2022

Our algorithm: Plackett-Luce Sampling With Inverse Candidate Frequency Weights

Set-up:

- n users: $U := \{u_i\}_{i=1}^n$
- m items: $V := \{v_i\}_{i=1}^m$
- For every user $u \in U$ let $\{v_{u_i}\}_{i=1}^{m_u}$ be the candidate set of m_u items that need to be ranked
- Let the corresponding set of relevance scores be given by $\{r_{u_i}\}_{i=1}^{m_u}$
- Let $\alpha, \beta \in \mathbb{R}$
- Let W_v be the number of candidate sets that item $v \in V$ appears in

Algorithm:

For each user $u \in U$ sample their ranking from the (scaled) Plackett-Luce distribution where the probability of sampling the ranking $(v_{u_1}, v_{u_2}, \ldots, v_{m_u})$ is

$$\prod_{j=1}^{m_u} \frac{\alpha \exp(\beta r_{u_j}) + \frac{1}{W_{v_{u_j}} + \alpha}}{\sum_{\ell=j}^n \alpha \exp(\beta r_{u_\ell}) + \frac{1}{W_{v_\ell} + \alpha}}$$

Candidate Set Construction

m candidates, each with a candidate score c_i

For all but 10 candidates, $c_i \sim B(\alpha = 1, \beta = 10)$. The other 10 candidates have a candidate score of 5.

Candidate sets of size k are sampled such that candidates with higher candidate scores are more likely to be included.

Experimental Set-Up

Algorithms

- **PL-ICFW**: Our algorithm
- Inverse Weighted: Our algorithm where α , $\Box = 0$
- Deterministic: Candidates ordered in decreasing order of relevance score
- Scaled-PL: Plackett-Luce Sampling
- **Randomized**: Uniformly randomized rankings
- **PG-Rank**: In-processing algorithm Singh & Joachims '19

Evaluation Metrics

- Inequality: The percentage of all views that the top 1% of candidates (with respect to views) receive, Lazovich et al. '22. Referred to as T1PS.
- Model Performance: The sum of the ground truth relevance scores of viewed candidates divided by total number of users. Referred to as content quality.

Synthetic Experiment Set-up

- n = 2000 users
- m = 1000 candidates
- k = 40 candidate set size
- l = 10 candidates viewed per user
- Given candidate score c_i , we assign the candidate a relevance score of $r_i:=\max\{0,5-c_i+x_i\}$ where $x_i\sim N(0,1)$

Key Takeaways: (1) Our approach outperforms the scaled PL baseline. The minimum T1PS that Scaled PL can achieve is 6% whereas our approach achieves 2% with nearly the same content quality. (2) Randomized performs extremely poorly for T1PS.

German Credit Experiment Set-Up

Data:

- 1000 individuals seeking a loan from a bank
- Each labeled as good or bad risk
- Each has 29 features such as demographic information, financial history, education, employment, etc.

Relevance scores and baselines:

- Linear model trained to get relevance scores for all methods except PG-Rank
- PG-Rank trained for individual fairness with various hyperparameters
- In both cases, we used queries of size 10 such that in expectation 4 people have a positive label in each query

Simulation:

- m = 200 candidates
- n = 2000 users
- k = 15 candidate set size
- *l* = 5 seen
 - recommendations per user
- Popular items are the 10 items with the lowest 50-59 predicted scores

German Credit Experiment Results

Key Takeaways:

(1) Our approach outperforms the other baselines when T1PS < 20%.

(2) Randomized performs poorly for T1PS.

Limitations

- 1. Sensitivity of W_v , number of times candidate v appears in a candidate set, over different time periods.
- 2. Optimality of our algorithm unknown.
- 3. Sensitivity of our algorithm's hyperparameters to relevance scores.
- 4. If candidate sets have too much inequality, mitigating candidate set inequality may require intervention at the candidate generation step.

Key Takeaways:

- Common-sense solutions to "fair ranking" can behave unexpectedly when candidate sets are imbalanced.
- We proposed a simple, computationally inexpensive post-processing algorithm that interpolates between consumer-utility and producer-side exposure.