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Recommender systems are being employed across an increasingly diverse set of domains that can potentially make a significant social and individual
impact. For this reason, considering fairness is a critical step in the design and evaluation of such systems. In this paper, we introduce HyperFair, a
general framework for enforcing soft fairness constraints in a hybrid recommender system. HyperFair models integrate variations of fairness metrics
as a regularization of a joint inference objective function. We implement our approach using probabilistic soft logic and show that it is particularly
well-suited for this task as it is expressive and structural constraints can be added to the system in a concise and interpretable manner. We propose two
ways to employ the methods we introduce: first as an extension of a probabilistic soft logic recommender system template; second as a fair retrofitting
technique that can be used to improve the fairness of predictions from a black-box model. We empirically validate our approach by implementing multiple
HyperFair hybrid recommenders and compare them to a state-of-the-art fair recommender. We also run experiments showing the effectiveness of our
methods for the task of retrofitting a black-box model and the trade-off between the amount of fairness enforced and the prediction performance.

1 Introduction
As the ubiquity of recommender systems continues to grow, concerns of bias and fairness are becoming increasingly
urgent to address. An algorithm oblivious to any form of fairness has the potential to propagate, or even amplify,
discrimination [1, 28]. In doing so, certain groups can be severely impacted by the recommendations provided. For
instance, one study showed that an algorithm for targeted advertising of jobs in the STEM fields was delivering more
advertisements to men than women with similar professional backgrounds [18]. The need to integrate fairness and
ensure that different groups of users are experiencing the same level of utility from recommender systems has been
acknowledged by the artificial intelligence community [6, 23].

We introduce techniques for integrating fairness metrics as regularizations of a joint inference objective function
of a probabilistic graphical model. Our approach naturally leads to novel collections of rules that can be added to
a probabilistic soft logic (PSL) [2] model. Furthermore, the weights of the rules can be translated as regularization
parameters which can be tuned by the modeler or via weight learning [2]. This motivates a general framework for
introducing multiple soft fairness constraints in a hybrid recommender system which we refer to as HyperFair.

HyperFair builds upon the HyPER recommender system introduced by Kouki et al. [15] by adding the ability
to enforce multiple soft fairness constraints to the model predictions. This framework is general enough to capture
previous work by Farnadi et al. [8] who proposed PSL modelling techniques for addressing disparities stemming from
imbalanced training data and observation bias. We develop a generic technique, provide principled derivations of the
soft constraints, and show how a set of fairness metrics can be precisely targeted.

Our key contributions are as follows: 1) we introduce theHyperFair framework for enforcing soft fairness constraints
in a hybrid recommender system; 2) we show that non-parity and value unfairness can be written as linear combinations
of hinge-loss potentials and can thus be integrated into the PSL inference objective via template rules; 3) we perform
an empirical analysis using theMovieLens dataset and show both how our fairness rules can be used internally or as a
method for retrofitting the output of a black-box algorithm to increase the fairness of predictions; and 4) we show our
method improves fairness over baseline models and outperforms a state-of-the-art fair recommender [27] in terms of
RMSE and value unfairness.
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2 Background
We begin by briefly reviewing related work upon which our approach builds.

2.1 Fairness in Recommender Systems
Methods for addressing fairness can occur at three stages of a recommender pipeline: pre-process, in-process, and
post-process [23]. Pre-processing techniques transform the data so that discrimination characteristics are removed prior
to model training [5, 17]. In-processing techniques attempt to remove discrimination during the model training process
by incorporating changes into the objective function. Post-processing techniques treat the learned model as a black box
and modify the output to remove discrimination [10, 11, 20, 24, 25]. Post-processing techniques are particularly attractive
to industry since their treatment of the predictor as a black-box makes for a manageable integration into an existing
pipeline [9, 10]. Recent work has shown the effectiveness of both adversarial learning [4, 21, 22] and regularization
[3, 13, 27]. Our methods can be used as either an in-processing or post-processing method, and builds upon the line of
research that addresses fairness via regularization.

2.2 Hybrid Recommenders using Probabilistic Soft Logic
Probabilistic soft logic (PSL) is a probabilistic programming language that has been shown to be effective for hybrid
recommender systems [15]. PSL’s advantages include the ability to easily write interpretable, extendable, and explainable
hybrid systems [16]. PSL models specify probabilistic dependencies using logical and arithmetic rules; the rules,
combined with data, are translated into a conditional random field referred to as a hinge-loss Markov random field

(HL-MRF) [2]. Given a set of evidence x and continuous unobserved variables y, the inference objective is given by:

min
y∈[0,1]𝑛

𝑘∑
𝑖

𝑤𝑖𝜙𝑖 (y, x) (1)

where 𝑘 is the number of unique hinge-loss potential functions, 𝜙𝑖 (·), and𝑤𝑖 are the corresponding scalar weights. In
addition to expressivity, an important advantage of HL-MRFs is their scalability; inference is convex, and a variety of
specialized optimizers have been proposed [26] (more details about PSL in Section A).

Following Kouki et al. [15], the following collection of rules expresses a simple, intuitive hybrid recommender model:

Demographic and Content Similarity: Demographic-based approaches are built upon on the observation that users
with similar demographic properties will tend to make similar ratings. Likewise, content-based approaches are built
upon on the observation that items with similar content will be rated similarly by users. This is different from the
collaborative filtering approach as the rating patterns of users and items is strictly not considered in the similarity
calculation.

Rating(U1, I) ∧ SimUserDemo(U1, U2) → Rating(U2, I)

Rating(U, I1) ∧ SimItemContent(I1, I2) → Rating(U, I2)

The predicate Rating(U, I) represents the normalized value of the rating that user U provided for item I.
SimUserDem(U1, U2) and SimItemContent(I1, I2) represent the similarity of users U1 and U2 and items I1 and I2.

Neighborhood-based Collaborative Filtering: Neighborhood-based collaborative filtering methods capture the
notion that users that have rated items similarly in the past will continue to rate new items similarly. An analogous and
transposed notion applies to items, i.e., items that have been rated similarly by many of the same users will continue
to be rated similarly. Similarity in this context is based solely on rating patterns and can be measured using various
metrics.
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Rating(U1, I) ∧ SimUsers(U1, U2) → Rating(U2, I)

Rating(U, I1) ∧ SimItems(I1, I2) → Rating(U, I2)

SimUsers(U1, U2) and SimItems(I1, I2) represent the similarity of users U1 and U2 and items I1 and I2, respectively.

Local Predictor Prior: One of the advantages of the HyPER system is its ability to combine multiple recommendation
algorithms into a single model in a principled fashion. Recommender predictions are incorporated as non-uniform
priors in the PSL model using the pattern shown below.

LocalPredictor(U, I) = Rating(U, I)

The predicate LocalPredictor(U, I) represents the prediction made by the external recommendation algorithm.

Mean-Centering Priors: Based on the above rules, ratings are propagated across similar users, and if two users
have different average ratings, then these ratings may actually bias one another too much. To counter this effect, the
following rules bias ratings towards the average user and item rating calculated from the observed ratings:

AverageUserRating(U) = Rating(U, I)

AverageItemRating(I) = Rating(U, I)

The predicates AverageItemRating(I) and AverageUserRating(U) represent the average normalized value of the
ratings associated with user U and item I, respectively.

2.3 FairPSL
Farnadi et al. [8] introduced two collections of rules that can be added to a PSL recommender system to address
disparities derived from training data and observations. The authors use the same metrics we consider as proxies to
measure this notion of disparity. Our work is different in that we give the modeler a finer level of control. Rather than
attempting to capture multiple notions of fairness at once, we propose techniques that integrate specific fairness metrics
into the PSL inference objective as regularizers. In this way, the modeler is able to tune the degree of the specific metric
to the domain they are working in simply by adjusting the weight of the additional rules.

3 HyperFair
In this section, we introduce HyperFair, a framework for enforcing multiple soft fairness constraints in a hybrid
recommender system. HyperFair is a natural development to HyPER[15] that incorporates fairness metrics,𝑈 , via
regularization of the HL-MRF MAP inference objective (1):

min
y∈[0,1]𝑛

𝑤 𝑓𝑈 +
𝑘∑
𝑖

𝑤𝑖𝜙𝑖 (y, x) (2)

where𝑤 𝑓 ∈ R+ is the scalar regularization parameter. A fairness metric, 𝑈 , in a HyperFair model is expressed as a
linear combination of hinge loss potential functions and can then be written as a PSL rule.

A particularly active and productive area of research is defining fairness metrics, and there are many metrics
that could be targeted by the proposed HyperFair framework. Following the line of work in [27] and [8], we focus
on the unfairness metrics of non-parity and value unfairness defined in the following sections. These metrics were
introduced in [27] specifically for addressing disparity stemming from biased training data in collaborative-filtering
based recommender systems.



4 Charles Dickens, Rishika Singh, and Lise Getoor

For the remainder of this paper, we will let 𝑔 represent the protected group of users, i.e., 𝑔 is a subset of all the users
present in the data that have been identified as possessing a protected attribute. Then, ¬𝑔 represents the remaining
subset of users that do not possess the protected attribute. We let R be the set of ratings in the dataset,𝑚 the number of
predictions made by the model, 𝑛 the number of unique items in the dataset, and 𝑣𝑖, 𝑗 and 𝑟𝑖, 𝑗 the predicted and true
rating user 𝑖 gives item 𝑗 , respectively. For the fairness metric definitions, we use 𝐸𝑔 [𝑣] and 𝐸¬𝑔 [𝑣] to represent the
average predicted ratings for 𝑔 and ¬𝑔, respectively, 𝐸𝑔 [𝑣]𝑗 and 𝐸¬𝑔 [𝑣]𝑗 represent the average predicted ratings for
item 𝑗 for 𝑔 and ¬𝑔, respectively, and 𝐸𝑔 [𝑟 ]𝑗 and 𝐸¬𝑔 [𝑟 ]𝑗 represent the average true ratings for item 𝑗 for 𝑔 and ¬𝑔,
respectively.

3.1 Non-parity Unfairness
Non-parity unfairness,𝑈𝑝𝑎𝑟 , aims to minimize the disparity in the overall average predicted ratings of the protected
and unprotected groups.

𝑈𝑝𝑎𝑟 (𝑣) = | (𝐸𝑔 [𝑣] − 𝐸¬𝑔 [𝑣]) |

In this section, we motivate a collection of rules that can be added to the PSL recommender system as an approach
to minimize this metric. We start by introducing two new free variables to the inference problem (1), 𝑦𝑛+1 and 𝑦𝑛+2,
and the following hard constraints without breaking the convexity of PSL inference:

𝑐1 (y, x) := 𝑦𝑛+1 −
1

|{(𝑖, 𝑗) : ((𝑖, 𝑗) ∈ R) ∧ 𝑔𝑖 }|
∑

(𝑖, 𝑗) :( (𝑖, 𝑗) ∈R)∧𝑔𝑖
𝑣𝑖, 𝑗 = 0

𝑐2 (y, x) := 𝑦𝑛+2 −
1

|{(𝑖, 𝑗) : ((𝑖, 𝑗) ∈ R) ∧ ¬𝑔𝑖 }|
∑

(𝑖, 𝑗) :( (𝑖, 𝑗) ∈R)∧¬𝑔𝑖
𝑣𝑖, 𝑗 = 0

With the two additional hard constraints, the solution of the new optimization problem is a state such that 𝑦∗
𝑛+1 = 𝐸𝑔 [𝑣]

and 𝑦∗
𝑛+2 = 𝐸¬𝑔 [𝑣]. The two hard constraints can be added to the PSL model by introducing the following pair of rules:

Rating(+U, +I)/𝑚𝑔 = ProtectedAvgRating(c) . {U : Protected(U)} {I : ProtectedItem(I)}

Rating(+U, +I)/𝑚¬𝑔 = UnProtectedAvgRating(c) . {U : UnProtected(U)} {I : UnProtectedItem(I)}

where𝑚𝑔 and𝑚¬𝑔 are the total number of ratings for the protected and unprotected group, respectively, and are added
as a preprocessing step. The predicates ProtectedAvgRating(c) and UnProtectedAvgRating(c) hold the values
of 𝑦𝑛+1 and 𝑦𝑛+2 , respectively. We can now define the two following hinge-loss potentials:

𝜙𝑘+1 (y, x) = max
{
1 − 𝑦𝑛+1 − (1 − 𝑦𝑛+2), 0

}
𝜙𝑘+2 (y, x) = max

{
1 − 𝑦𝑛+2 − (1 − 𝑦𝑛+1), 0

}
Observe that𝑈𝑝𝑎𝑟 = 𝜙𝑘+1 (𝑦∗𝑛+1, x) + 𝜙𝑘+2 (𝑦

∗
𝑛+2, x). This transformation allows us to push the regularizer in (2) into the

summation to create a valid PSL objective function. Formally, if we let𝑤𝑘+1 = 𝑤𝑘+2 = 𝑤 𝑓 , then:

argmin
y∈[0,1]𝑛

𝑤 𝑓𝑈𝑝𝑎𝑟 +
𝑘∑
𝑖

𝑤𝑖𝜙𝑖 (y, x) ≡ argmin
y∈[0,1]𝑛+2

𝑘+2∑
𝑖

𝑤𝑖𝜙𝑖 (y′, x) (3)

s.t. 𝑐1 (y, x) = 0, 𝑐2 (y, x) = 0

Furthermore, we now have that the right hand side of (3) is a valid HL-MRF that can be instantiated using PSL.



HyperFair: A Soft Approach to Integrating Fairness Criteria 5

The following rule can be added to a PSL model to obtain the two desired ground potentials 𝜙𝑘+1 and 𝜙𝑘+2.

ProtectedAvgRating(c) = UnProtectedAvgRating(c)

Altogether, this method for addressing non-parity unfairness results in a total of 4 additional ground potentials and 3
additional rules in the PSL template and achieves precisely the desired semantics. Furthermore, the regularization term
𝑤 𝑓 is directly translated as a weight in PSL that can be tuned by the modeler or via weight learning.

3.2 Value Unfairness
Next, we motivate our approach in addressing value unfairness. Value unfairness aims to minimize the expected
inconsistency in the signed estimation error between the protected and unprotected user groups.

𝑈𝑣𝑎𝑙 (𝑦) =
1
𝑛

𝑛∑
𝑗=1

| (𝐸𝑔 [𝑣]𝑗 − 𝐸𝑔 [𝑟 ]𝑗 ) − (𝐸¬𝑔 [𝑣]𝑗 − 𝐸¬𝑔 [𝑟 ]𝑗 ) |

A key difference between this metric and non-parity is that the truth values of the predictions are included in the
definition of the metric and thus cannot be directly targeted during inference. In PSL the truth values of the target
predicates are withheld until evaluation. Therefore, the approach we take is to estimate properties of the rating
distribution prior to running the model to approximate the desired inference objective function (2).

We start the derivation of the fairness rules we will be adding to the PSL model by augmenting the inference
optimization problem of (1) with two hard constraints for every item in the dataset, that is for all 𝑗 ∈ 𝐼 = { 𝑗 : (𝑖, 𝑗) ∈ R}.
Note that these constraints do not break the convexity properties of the original optimization problem.

𝑐1, 𝑗 (𝑦𝑛+𝑗 , x) := 𝑦𝑛+𝑗 −
1

|{𝑖 : ((𝑖, 𝑗) ∈ R) ∧ 𝑔𝑖 }|
∑

𝑖:( (𝑖, 𝑗) ∈R)∧𝑔𝑖
𝑣𝑖, 𝑗 = 0

𝑐2, 𝑗 (𝑦𝑛+𝑗+|𝐼 |, x) := 𝑦𝑛+𝑗+|𝐼 | −
1

|{𝑖 : ((𝑖, 𝑗) ∈ R) ∧ ¬𝑔𝑖 }|
∑

𝑖:( (𝑖, 𝑗) ∈R)∧¬𝑔𝑖
𝑣𝑖, 𝑗 = 0

With these hard constraints, the setting of the free variables 𝑦𝑛+1, · · · , 𝑦𝑛+|𝐼 |, 𝑦𝑛+|𝐼 | · · ·𝑦𝑛+2 |𝐼 | in the optimal solution
will be such that (𝑦∗

𝑛+1 = 𝐸𝑔 [𝑣]1), · · · , (𝑦∗𝑛+|𝐼 | = 𝐸𝑔 [𝑣] |𝐼 |), (𝑦∗𝑛+1+|𝐼 | = 𝐸¬𝑔 [𝑣]1) · · · (𝑦∗𝑛+2 |𝐼 | = 𝐸¬𝑔 [𝑣] |𝐼 |). These hard
constraints are added to the PSL inference objective with the following rule:

Rating(+U, I)/@𝑀𝑎𝑥 [1, |U|] = PredGroupAvgItemRating(G, I) . {U : target(U, I) ∧ Group(G, U)}

PredGroupAvgItemRating(G, I) represents the average of the predicted ratings that users in group 𝐺 gave item 𝐼 .
The term 𝐺 in this rule represents either the unprotected or protected group.

At the time of inference, we cannot calculate the average true values of the ratings for either the protected or
unprotected group, 𝐸𝑔 [𝑟 ]𝑗 or 𝐸¬𝑔 [𝑟 ]𝑗 , since the true rating value information is withheld until evaluation. Instead, the
group average item rating is estimated using the observed ratings, 𝐸𝑔 [𝑟 ]𝑗 = 1

| {𝑖:( (𝑖, 𝑗) ∈R𝑜𝑏𝑠 )∧𝑔𝑖 } |
∑
𝑖:( (𝑖, 𝑗) ∈R𝑜𝑏𝑠 )∧𝑔𝑖 𝑣𝑖, 𝑗

and similarly, 𝐸¬𝑔 [𝑟 ]𝑗 = 1
| {𝑖:( (𝑖, 𝑗) ∈R𝑜𝑏𝑠 )∧¬𝑔𝑖 } |

∑
𝑖:( (𝑖, 𝑗) ∈R𝑜𝑏𝑠 )∧¬𝑔𝑖 𝑣𝑖, 𝑗 , where R𝑜𝑏𝑠 is the set of observed ratings. The

observed group average item rating is calculated in a preprocessing step and is added to the model as an observed
predicate, ObsGroupAvgItemRating(G, I).

We can now define the following set of hinge-loss potentials:

𝜙𝑘+𝑗 (y, x) = max
{
(𝑦𝑛+𝑗 − 𝐸𝑔 [𝑟 ]𝑗 ) − (𝑦𝑛+𝑗+|𝐼 | − 𝐸¬𝑔 [𝑟 ]𝑗 ), 0

}
𝜙𝑘+𝑗+|𝐼 | (y, x) = max

{
(𝑦𝑛+𝑗+|𝐼 | − 𝐸¬𝑔 [𝑟 ]𝑗 ) − (𝑦𝑛+𝑗 + 𝐸𝑔 [𝑟 ]𝑗 ), 0

}
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Then, in the optimal state:𝑈𝑣𝑎𝑙 ≈ 𝑛
∑2 |𝐼 |

𝑗=1 𝜙𝑘+𝑗 (y
∗, x) =: 𝑈𝑣𝑎𝑙 . This transformation allows us to push an approximation

of the regularizer in (2) into the summation of the HL-MRF MAP inference objective function. Formally, if we let
𝑤𝑘+𝑗 = 𝑤 ′ = 1

𝑛𝑤𝑉𝑎𝑙 for all 𝑗 ≥ 0, then:

argmin
y∈[0,1]𝑛

𝑤 𝑓𝑈𝑣𝑎𝑙 +
𝑘∑
𝑖

𝑤𝑖𝜙𝑖 (y, x) ≡ argmin
y′∈[0,1]𝑛+2|𝐼 |

𝑘+2 |𝐼 |∑
𝑖

𝑤𝑖𝜙𝑖 (y′, x) (4)

s.t. 𝑐1, 𝑗 (y′, x) = 0, 𝑐2, 𝑗 (y′, x) = 0, ∀𝑗 ∈ 𝐼

Further, we have (4) is a valid HL-MRF that can be instantiated using PSL. Specifically, the following rule in PSL results
in the desired potentials 𝜙𝑘+1, · · · , 𝜙𝑘+2 |𝐼 | :

PredGroupAvgItemRating(G1, I) − ObsGroupAvgItemRating(G1, I)

= PredGroupAvgItemRating(G2, I) − ObsGroupAvgItemRating(G2, I)

This approach approximates the targeted fairness metric using statistics from the set of observations. The approximation
is then transformed into a summation of hinge-loss potential functions that could be pushed into a PSL inference
objective function. Furthermore, the weight of the arithmetic rule in this intervention can be interpreted as a scaled
version of the regularization parameter of the fairness metric in (2).

4 Empirical Evaluation
We evaluate our proposed PSL fairness interventions on the Movielens 1M dataset [12]. In addition to the ratings, this
dataset includes auxiliary information such as movie metadata (e.g., genres, title, and release date) and user demographic
information (e.g., gender, age, and occupation). In table 2 of [27], the authors summarize some of the gender-based
statistics of theMovieLens 1M dataset which underscores the disparity in the ratings. Therefore, following the same
preprocessing steps taken in previous related work [8, 27], the protected and unprotected groups are chosen to be
female and male, respectively, and movies are filtered by genre, considering only those with action, romance, crime,
musical, and sci-fi tags, and finally users with fewer than 50 ratings are removed. The remaining dataset contains
approximately 450K timestamped ratings made by 3K users across 1K movies.

4.1 In-Process Fairness Intervention
The baseline hybrid recommender system (Section 2.2) uses cosine similarity for the similarity predicates and three local
predictors, non-negative matrix factorization (NMF) [19], biased singular value decomposition (SVD) [14], and a content-
based multinomial Naive Bayes multi-class classifier with Laplace smoothing that is trained using the demographic and
content information of the user and item, respectively. Five versions of the PSL recommender system, extending the
baseline model, are implemented:

• PSL Base: demographic and content similarity, collaborative filtering, local predictor, and mean-centering rules
• HyperFair(NP): The PSL Base model with the non-parity fairness rules.
• HyperFair(Val): The PSL Base model with the value fairness rules.
• HyperFair(NP + Val): The PSL Base model with both the non-parity and value fairness rules.
• Fair PSL: The PSL Base model with rules introduced by Farnadi et al. [8].

We also implemented three of the fair matrix factorization methods introduced by Yao and Huang [27] using the
hyperparameters and training methods chosen by the authors, i.e., we use a L2 regularization term 𝜆 = 10−3 and
learning rate of 0.1 for 500 iterations of Adam optimization using the full gradient. The first is the baseline matrix
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Table 1. Prediction performance(RMSE) and unfairness(Non-Parity and Value) of recommender systems onMovieLens1m

Model RMSE (SD) Non-Parity (SD) Value (SD)

MF 0.945(1.0𝑒-3) 0.0371(1.6𝑒-3) 0.349(6.0𝑒-3)
MF NP 0.945(1.0𝑒-3) 0.0106(2.0e-3) 0.351(6.3𝑒-3)
MF Val 0.950(6.4𝑒-4) 0.0446(3.0𝑒-3) 0.343(3.4𝑒-3)
Fair PSL 0.932(9.7e-4) 0.0274(9.6𝑒-4) 0.332(5.5e-3)
PSL Base 0.931(1.2e-3) 0.0270(1.4𝑒-3) 0.330(4.4e-3)
HyperFair(NP) 0.945(1.1𝑒-2) 0.0215(5.0𝑒-3) 0.338(9.9e-3)
HyperFair(Val) 0.932(1.1e-3) 0.0267(8.6𝑒-4) 0.333(6.9e-3)
HyperFair(NP + Val) 0.932(1.1e-3) 0.0274(1.4𝑒-3) 0.331(4.5e-3)

factorization based approach which we refer to asMF. The second and third methods are where the matrix factorization
objective function is augmented with the smoothed non-parity and value unfairness metrics, which we refer to as MF

NP and MF Val, respectively. For both the HyperFair models we introduced in this work and the matrix factorization
methods, we set the fairness regularization parameter to 1.0.

We measure the prediction performance of each of the models using the RMSE of the rating predictions. The
unfairness of the predictions are measured using the metrics defined in Section 3. The prediction performance and
fairness metrics are measured across 5 folds of the MovieLens dataset and we report the mean and standard deviation
for each model. We bold the best value, and values not statistically different from the best with 𝑝 < 0.05 for a paired
sample t-test.

We can see from Table 1 that the HyperFair models either improved on the targeted fairness metric over PSL
Base or achieved results that were not significantly different from the best PSL model. Notably, HyperFair(NP)

achieved significantly better non-parity unfairness over PSL Base and the anticipated performance decrease in the
RMSE of the rating predictions was minimal. In fact, the HyperFair(NP) still achieved the same level of prediction
accuracy as the highest performing matrix factorization method. Another interesting takeaway from Table 1 is that
when attempting to optimize for both non-parity and value unfairness simultaneously in HyperFair(NP + Val), the
effectiveness of the non-parity rule decreases. This effect can also be observed in the Fair PSL of [7], where both
fairness notions are attempting to be addressed with a single set of rules. A potential explanation of this could be that
the value unfairness and non-parity unfairness metrics are opposing one another, that is to say that a set of ratings that
performs well on value unfairness in this dataset may actually perform poorly on non-parity unfairness, and vice-versa.
Fully understanding this behavior and controlling the tradeoff between the metrics is a direction for future work.

When comparing the PSL models to the matrix factorization models from [27], we see that PSL consistently achieves
better RMSE and value unfairness, while matrix factorization achieves better non-parity unfairness values. It is important
to note that Table 1 only reflects metrics values for the regularization parameter𝑤 𝑓 = 1.0. In the next set of experiments,
we show how tuning the non-parity unfairness regularization parameter can effectively yield predictions that fall
within a desired non-parity unfairness threshold.

4.2 Post-Process Fairness Intervention
Another way we employ our proposed methods is as an interpretable fair retrofitting procedure for predictions from an
arbitrary black-box model. To show the effectiveness of our methods for this task, we create a simple PSL model that
contains only the NMF local predictor rule and the fairness rule. We refer to these models as NMF + NP PSL and NMF

+ Val PSL for the models with non-parity and value unfairness rules, respectively. The weights of the fairness rules in
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(a) (b)

Fig. 1. (a) Non-Parity unfairness and RMSE performance of NMF + NP PSL vs the value of the fairness regularization parameter.

(b) Value unfairness and RMSE performance of NMF + Val PSL vs the value of the fairness regularization parameter.

the templates are varied to show the tradeoff between prediction performance and the fairness metric. For both models,
we run experiments for all𝑤 𝑓 ∈ {0.0, 0.01, 0.1, · · · , 10000.0}.

Fig. 1 shows both the RMSE and the fairness of the ratings predicted by the NMF model. We see that NMF + NP PSL

begins to improve the predictions’ fairness without significantly decreasing the performance when the regularization
parameter is set to 100.0. When the parameter exceeds 10.0, there is a significant decrease in the non-parity unfairness,
reaching nearly 0.0, while the increase in RMSE is still not drastic.

The Val + NP PSL model initially does not improve the value unfairness of the NMF rating predictions. We suspect
this behavior suggests that the quality of the estimator for the group average item rating needs improvement and
initially biases the predictions in a detrimental way and is a direction for future investigation. There is a region where the
value unfairness begins a downward trend with respect to the fairness regularizer, as is desired. This is an encouraging
result, showing that the weight of the fair rule generally has the desired relationship with value unfairness.

5 Conclusion and Future Work
We introduced the HyperFair framework for enforcing multiple soft fairness constraints in a hybrid recommender
system. The effectiveness of HyperFair methods are tested in a movie recommendation setting and it is shown they can
improve the fairness of predictions and still achieve state-of-the-art performance. One direction for future work would
be to integrate fairness into the weight learning objective of PSL. The experimental results of Section 4.2 showcased
that the fairness regularizer is an important hyperparameter to tune, and one way to automate this procedure is via
weight learning [2]. Another direction for future work is to integrate more fairness metrics and explore what new
modeling patterns can be developed for ranking based recommender systems.
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Appendix A Appendix

A.1 Probabilistic Soft Logic
Probabilistic soft logic (PSL) is a statistical relational learning (SRL) framework that uses arithmetic and first order
like logical syntax to define a specific type of probabilistic graphical model called a hinge-loss Markov random field
(HL-MRF) [2]. To do this, PSL derives potential functions from the provided rules which take the form of hinges. Data
is used to instantiate several potential functions in a process called grounding. The resulting potential functions are
then used to define the HL-MRF. The formal definition of a HL-MRF is as follows:

Definition 1. Hinge-loss Markov random field. Let y = (𝑦1, · · · , 𝑦𝑛) be a vector of 𝑛 variables and x = (𝑥1, · · · , 𝑥𝑛′) a
vector of 𝑛′ variables with joint domain D = [0, 1]𝑛+𝑛′ . Let 𝜙 = (𝜙1, · · · , 𝜙𝑚) be a vector of𝑚 continuous potentials of

the form 𝜙𝑖 (y, x) = (max{ℓ𝑖 (y, x), 0})𝑝𝑖 , where ℓ𝑖 is a linear function of y and x and 𝑝𝑖 ∈ {1, 2}. Let c = (𝑐1, · · · , 𝑐𝑟 ) be a
vector of 𝑟 linear constraint functions associated with index sets denoting equality constraints E and inequality constraints



10 Charles Dickens, Rishika Singh, and Lise Getoor

I, which define the feasible set .

D̃ =

{
(y, x) ∈ D

����� 𝑐𝑘 (y, x) = 0, ∀𝑘 ∈ E
𝑐𝑘 (y, x) ≤ 0, ∀𝑘 ∈ I

}
Then, for (y, x) ∈ D̃, given a vector of𝑚 nonnegative parameters, i.e., weights, w = (𝑤1, · · · ,𝑤𝑚), a hinge-loss Markov
random field P over random variables y and conditioned on x is a probability density defined as:

𝑃 (y|x) =


1
𝑍 (w,x) exp(−

∑𝑚
𝑗=1𝑤 𝑗𝜙 𝑗 (y, x)) (y, x) ∈ D̃

0 𝑜.𝑤 .
(5)

where 𝑍 (w, x) =
∫
y | (y,x∈D̃) exp(−𝑓w (y, x))𝑑y is the partition function for the conditional distribution.

Rules in a PSL model capture interactions between variables in the domain and can be in the form of a first order
logical implication or a linear arithmetic relation. Each rule is made up of predicates with varying numbers of arguments.
Substitution of the predicate arguments with constants present in the data generate ground atoms that can take on a
continuous value in the range [0, 1]. A logical rule must have a conjunctive clause in the body and a disjunctive clause
in the head, while an arithmetic rule must be an inequality or equality relating two linear combinations of predicates.

A logical rule is translated as a continuous relaxation of Boolean connectives using Lukasiewicz logic. Specifically,
𝑃 ∧𝑄 results in the potential max(0.0, 𝑃+𝑄 − 1.0), 𝑃 ∨𝑄 results in the potential min(1.0, 𝑃+𝑄), and ¬𝑄 results in the
potential 1.0 −𝑄 . Each grounding of an arithmetic rule is manipulated to ℓ (y, x) ≤ 0 and the resulting potential takes
the form max{ℓ (y, x), 0}.

We now illustrate the process of instantiating a HL-MRF using PSL with an example in the context of recommender
systems.

SimUser(U1, U2) ∧ Rating(U1, M) → Rating(U2, M) (1)
¬SimUser(U1, U2) ∨ ¬Rating(U1, M) ∨ Rating(U2, M) (2)
𝑚𝑖𝑛{1.0, (1.0 − SimUser(Alice, Bob)+(1.0 − Rating(Alice, Alien))+Rating(Bob, Alien)} (3)

Example 1. Consider a movie recommendation setting where the task is to predict the ratings users will provide movies

that they have not yet rated. We can encode the idea that similar users are likely to enjoy the same movies using the logical

statement (1).

Here, SimUser is an observed predicate that represents the similarity between two users, and Rating is the predicate that

we are trying to predict, i.e., the rating a user will give a movie. PSL first converts the rule to its disjunctive normal form,

(2). Then, all possible substitutions of constants for the variable arguments in the predicates of the rule are made to make

ground atoms. Then, all possible combinations of atoms that can form a ground rule are made.

Finally, by utilizing the Lukasiewicz relaxation, the following hinge-loss function is created. For instance, let us assume

we have data with users U = {𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏} and movies M = {𝐴𝑙𝑖𝑒𝑛}. This will result in the hinge-loss function (3).

We refer the reader to [2] for a more detailed description of PSL.
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